
Explain different types of spectral series in a hydrogen atom.
Answer
498.6k+ views
- Hint: Spectral series is obtained when an atom emits energy while making transition from higher energy level to lower energy level. Different lines in the spectral series corresponds to different amounts of energy released. A hydrogen atom consists of an electron revolving around the nucleus.
Complete step-by-step solution -
A hydrogen atom consists of an electron orbiting around the nucleus. The electron can orbit in different orbits called energy levels. When it makes transition from higher energy level to lower energy level, it emits energy in the form of light. The wavelength of emitted light depends on transition levels. This gives rise to the emission spectrum of hydrogen which consists of different spectral lines corresponding to each transition.
The wavelength of emitted light is given by Rydberg formula,
\[\dfrac{1}{\lambda }=R{{Z}^{2}}(\dfrac{1}{{{p}^{2}}}-\dfrac{1}{{{n}^{2}}})\]
Where, R is Rydberg constant = $1.09737\times {{10}^{7}}{{m}^{-1}}$
Z is atomic number (for hydrogen Z=1)
P is lower energy level
n is higher energy
Spectral lines appearing in hydrogen spectrum:
1. Lyman series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=2, 3, 4, 5….) to first energy level (p=1) is termed as Lyman series. It lies in the ultraviolet region of the electromagnetic spectrum.
2. Balmer series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=3, 4, 5, 6….) to second energy level (p=2) is termed as the Balmer series. It lies in the visible region of the electromagnetic spectrum. The first line in the series (n=3 to p=2) is called ${{H}_{\alpha }}$ line, the second line in the series (n=4 to p=2) is called \[{{H}_{\beta }}\] line, etc.
3. Paschen series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=4, 5, 6, 7….) to first energy level (p=3) is termed as the Paschen series. It lies in the infrared region of the electromagnetic spectrum.
4. Brackett series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=5, 6, 7, 8….) to first energy level (p=4) is termed as Brackett series. It lies in the infrared region of the electromagnetic spectrum.
5. Pfund series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=6, 7, 8, 9….) to first energy level (p=5) is termed as Pfund series. It lies in the infrared region of the electromagnetic spectrum.
Note: A spectrum is the footprint of an atom. It is unique for a given atom. From the spectrum we can deduce many properties and characteristics of an unknown sample such as its electronic configuration, its shape, crystal structure etc. There are different types of spectroscopic techniques available to get a spectrum of a given sample.
Complete step-by-step solution -
A hydrogen atom consists of an electron orbiting around the nucleus. The electron can orbit in different orbits called energy levels. When it makes transition from higher energy level to lower energy level, it emits energy in the form of light. The wavelength of emitted light depends on transition levels. This gives rise to the emission spectrum of hydrogen which consists of different spectral lines corresponding to each transition.
The wavelength of emitted light is given by Rydberg formula,
\[\dfrac{1}{\lambda }=R{{Z}^{2}}(\dfrac{1}{{{p}^{2}}}-\dfrac{1}{{{n}^{2}}})\]
Where, R is Rydberg constant = $1.09737\times {{10}^{7}}{{m}^{-1}}$
Z is atomic number (for hydrogen Z=1)
P is lower energy level
n is higher energy
Spectral lines appearing in hydrogen spectrum:
1. Lyman series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=2, 3, 4, 5….) to first energy level (p=1) is termed as Lyman series. It lies in the ultraviolet region of the electromagnetic spectrum.
2. Balmer series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=3, 4, 5, 6….) to second energy level (p=2) is termed as the Balmer series. It lies in the visible region of the electromagnetic spectrum. The first line in the series (n=3 to p=2) is called ${{H}_{\alpha }}$ line, the second line in the series (n=4 to p=2) is called \[{{H}_{\beta }}\] line, etc.
3. Paschen series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=4, 5, 6, 7….) to first energy level (p=3) is termed as the Paschen series. It lies in the infrared region of the electromagnetic spectrum.
4. Brackett series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=5, 6, 7, 8….) to first energy level (p=4) is termed as Brackett series. It lies in the infrared region of the electromagnetic spectrum.
5. Pfund series:
A series of spectral lines obtained when an electron makes a transition from any high energy level (n=6, 7, 8, 9….) to first energy level (p=5) is termed as Pfund series. It lies in the infrared region of the electromagnetic spectrum.
Note: A spectrum is the footprint of an atom. It is unique for a given atom. From the spectrum we can deduce many properties and characteristics of an unknown sample such as its electronic configuration, its shape, crystal structure etc. There are different types of spectroscopic techniques available to get a spectrum of a given sample.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE
