
What is the escape velocity to the orbital velocity ratio?
(A) $\sqrt 2 $
(B) $\dfrac{1}{{\sqrt 2 }}$
(C) $2$
(D) $\dfrac{1}{2}$
Answer
172.2k+ views
Hint: We are asked to find the ratio of escape velocity and orbital velocity. So we will derive the equations of the velocities and then find their ratio.
Formula Used
$K.E. = \dfrac{1}{2}m{v^2}$
Where, $K.E.$ is the kinetic energy of a body, $m$ is the mass of the body and $v$ is the velocity of the body.
${F_G} = \dfrac{{GMm}}{{{r^2}}}$
Where, ${F_G}$ is the gravitational force, $G$ is the universal gravitational constant, $M$ is the mass of the planet, $m$ is the mass of the body and $r$ is the radius of the planet.
${F_C} = \dfrac{{m{v^2}}}{r}$
Where, ${F_C}$ is the centripetal force on a body, $m$ is the mass of the body, $v$ is the velocity of the body and $r$ is the radius of motion.
Step By Step Solution
For finding the escape velocity of a planet, we should equate the kinetic energy of a body to the gravitational force on the body multiplied by the radius of the planet.
$\dfrac{1}{2}m{v_e}^2 = \dfrac{{GMm}}{{{r^2}}} \times r$
After further evaluation, we get
${v_e} = \sqrt {\dfrac{{2GM}}{r}} \cdot \cdot \cdot \cdot (1)$
Now,
For the orbital velocity of a planet, we can equate the centripetal force on a body and the gravitational force on the body.
$\dfrac{{m{v_o}^2}}{r} = \dfrac{{GMm}}{{{r^2}}}$
After further evaluation, we get
${v_o} = \sqrt {\dfrac{{GM}}{r}} \cdot \cdot \cdot \cdot (2)$
Now,
Applying $\dfrac{{Equation(1)}}{{Equation(2)}}$ , we get
$\dfrac{{{v_e}}}{{{v_o}}} = \sqrt 2 $
Hence, the answer is (A).
Note: Here we were asked to find the ratio of escape velocity to the orbital velocity of a planet, thus we got the ratio to be $\sqrt 2 $. But if the question was to find the ratio between orbital velocity to the escape velocity, then the answer will get reversed, that is the ratio becomes $\dfrac{1}{{\sqrt 2 }}$.
Formula Used
$K.E. = \dfrac{1}{2}m{v^2}$
Where, $K.E.$ is the kinetic energy of a body, $m$ is the mass of the body and $v$ is the velocity of the body.
${F_G} = \dfrac{{GMm}}{{{r^2}}}$
Where, ${F_G}$ is the gravitational force, $G$ is the universal gravitational constant, $M$ is the mass of the planet, $m$ is the mass of the body and $r$ is the radius of the planet.
${F_C} = \dfrac{{m{v^2}}}{r}$
Where, ${F_C}$ is the centripetal force on a body, $m$ is the mass of the body, $v$ is the velocity of the body and $r$ is the radius of motion.
Step By Step Solution
For finding the escape velocity of a planet, we should equate the kinetic energy of a body to the gravitational force on the body multiplied by the radius of the planet.
$\dfrac{1}{2}m{v_e}^2 = \dfrac{{GMm}}{{{r^2}}} \times r$
After further evaluation, we get
${v_e} = \sqrt {\dfrac{{2GM}}{r}} \cdot \cdot \cdot \cdot (1)$
Now,
For the orbital velocity of a planet, we can equate the centripetal force on a body and the gravitational force on the body.
$\dfrac{{m{v_o}^2}}{r} = \dfrac{{GMm}}{{{r^2}}}$
After further evaluation, we get
${v_o} = \sqrt {\dfrac{{GM}}{r}} \cdot \cdot \cdot \cdot (2)$
Now,
Applying $\dfrac{{Equation(1)}}{{Equation(2)}}$ , we get
$\dfrac{{{v_e}}}{{{v_o}}} = \sqrt 2 $
Hence, the answer is (A).
Note: Here we were asked to find the ratio of escape velocity to the orbital velocity of a planet, thus we got the ratio to be $\sqrt 2 $. But if the question was to find the ratio between orbital velocity to the escape velocity, then the answer will get reversed, that is the ratio becomes $\dfrac{1}{{\sqrt 2 }}$.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

CBSE Important Questions for Class 11 Physics Units and Measurement - 2025-26
