Answer
Verified
465k+ views
Hint: Here we need to convert the basic unit which is $1\;kg$,$1\;m$ and $1\;s$ to $10\;kg,1\;deci\;meter$and $1\;min$ respectively .We can define the terms and use their formula to the get the relationship between the $1\;MW$ with respect to basic unit $1\;kg$,$1\;m$ and $1\;s$, and then substitute the conversion of $10\;kg,1\;deci\;meter$and $1\;min$. Here we are using the units for conversion from basic to new unit systems.
Formula used:
$1J/s=\dfrac{1kg\times 1m/s^{-2}\times 1m}{1s}$ and $1dm=0.1m$ also $1s=\dfrac{1}{60}min$
Complete step by step answer:
Here, we have $1\;MW=10^{6}W$
We know that one watt is the energy consumed if $1\;J$ of energy flows for $1\;s$.
Then we can write $1\;MW=10^{6}W=10^{6}J/s$
Also energy is the ability of an object to do work, then we can say $1\;J$ is the work done in moving an object through a distance of $1\;m$ when $1\;N$ force acts on it.
Then we get, $1J=1N\times 1m$
Where $1\;N$ is the force that can accelerate $1\;kg$ mass at $1m/s$ or $1N=1kg\times 1m/s^{-2}$
Then we have $1J/s=\dfrac{1kg\times 1m/s^{-2}\times 1m}{1s}$
Then, $1MW=10^{6}J/s=\dfrac{10^{6}kg\times 1m/s^{-2}\times 1m}{1s}=\dfrac{10^{6}kg\times 1m^{2}}{1s^{3}}$
Clearly the basic unit here is $1\;kg$,$1\;m$ and $1\;s$
Here, we have to convert $1\;kg$ to $10\;kg$, $1\;m$ to $1\;dm$ and$1\;sec$ to $1\;min$
We know that $1dm=0.1m$ and $1s=\dfrac{1}{60}min$
Then when substituting the values in $M\,W$, we get,
$1MW=\dfrac{10^{6}\times 0.1 kg\times (10dm)^{2}}{\left(\dfrac{1}{60}min\right)^{3}}=216\times 10^{10}\dfrac{kg.dm^{2}}{min^{3}}=2.16\times 10^{12} unit$
Thus we get $1MW=2.16\times 10^{12}units$
Hence the answer is option \[C.2.16\times {{10}^{12}}units\]
Note:
Another alternative and simple way would be using dimensional analysis. We know that $1\;W$ has dimensions, $[ML^{2}T^{-3}]$ we can use the conversion $1\;kg$ to $10\;kg$, $1\;m$ to $1\;dm$ and$1\;sec$ to $1\;min$ in the form of ratio to where $M$ is the mass and will have the ratio of $1\;kg$ to $10\;kg$, $L$ is the length will have the ratio of $1\;m$ to $1\;dm$ and $T$ is the time and will have the ratio of $1\;sec$ to $1\;min$ respectively. This will also give the same answer as above.
Formula used:
$1J/s=\dfrac{1kg\times 1m/s^{-2}\times 1m}{1s}$ and $1dm=0.1m$ also $1s=\dfrac{1}{60}min$
Complete step by step answer:
Here, we have $1\;MW=10^{6}W$
We know that one watt is the energy consumed if $1\;J$ of energy flows for $1\;s$.
Then we can write $1\;MW=10^{6}W=10^{6}J/s$
Also energy is the ability of an object to do work, then we can say $1\;J$ is the work done in moving an object through a distance of $1\;m$ when $1\;N$ force acts on it.
Then we get, $1J=1N\times 1m$
Where $1\;N$ is the force that can accelerate $1\;kg$ mass at $1m/s$ or $1N=1kg\times 1m/s^{-2}$
Then we have $1J/s=\dfrac{1kg\times 1m/s^{-2}\times 1m}{1s}$
Then, $1MW=10^{6}J/s=\dfrac{10^{6}kg\times 1m/s^{-2}\times 1m}{1s}=\dfrac{10^{6}kg\times 1m^{2}}{1s^{3}}$
Clearly the basic unit here is $1\;kg$,$1\;m$ and $1\;s$
Here, we have to convert $1\;kg$ to $10\;kg$, $1\;m$ to $1\;dm$ and$1\;sec$ to $1\;min$
We know that $1dm=0.1m$ and $1s=\dfrac{1}{60}min$
Then when substituting the values in $M\,W$, we get,
$1MW=\dfrac{10^{6}\times 0.1 kg\times (10dm)^{2}}{\left(\dfrac{1}{60}min\right)^{3}}=216\times 10^{10}\dfrac{kg.dm^{2}}{min^{3}}=2.16\times 10^{12} unit$
Thus we get $1MW=2.16\times 10^{12}units$
Hence the answer is option \[C.2.16\times {{10}^{12}}units\]
Note:
Another alternative and simple way would be using dimensional analysis. We know that $1\;W$ has dimensions, $[ML^{2}T^{-3}]$ we can use the conversion $1\;kg$ to $10\;kg$, $1\;m$ to $1\;dm$ and$1\;sec$ to $1\;min$ in the form of ratio to where $M$ is the mass and will have the ratio of $1\;kg$ to $10\;kg$, $L$ is the length will have the ratio of $1\;m$ to $1\;dm$ and $T$ is the time and will have the ratio of $1\;sec$ to $1\;min$ respectively. This will also give the same answer as above.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE