
What is the basic cause of quantisation of charge?
Answer
159.3k+ views
Hint: If protons and electrons are the most fundamental particles and only charge carriers in the universe, then all the observable charges must be integral multiples of multiple electrons and protons.
Step by Step Answer
Charge quantization is the principle that the charge of an object is an integral multiple of the elementary charge.
Now, since protons and electrons are the only charge carriers in the universe, therefore all the observable charges must be integral multiple of electron. If an object contains $n$, electrons and ${n_2}$ protons, then the net charge on object is:
$ - {n_1}\left( e \right) + {n_2}\left( e \right) = \left( {{n_1} - {n_2}} \right)e$
Indeed, there are elementary particles other than protons and electrons, which carry charge. But all the elementary particles have charges which are integral multiple of $e$.. Thus charge on any object is always an integral multiple of $e$ and can be changed in steps of$e$, i.e. charge is quantized.
Note:
The step size $e$ is usually so small that we can easily neglect the quantization. If $l\,\mu \,C$ contains $n$ units of basic charge $e$ where,
$n = \dfrac{{l\,\mu \,C}}{{1.6 \times {{10}^{ - 19C}}}} = 6 \times {10^{12}}$
The step size is thus very small as compared to the charges usually found. Hence in many cases, we assume a continuous charge variation.
Step by Step Answer
Charge quantization is the principle that the charge of an object is an integral multiple of the elementary charge.
Now, since protons and electrons are the only charge carriers in the universe, therefore all the observable charges must be integral multiple of electron. If an object contains $n$, electrons and ${n_2}$ protons, then the net charge on object is:
$ - {n_1}\left( e \right) + {n_2}\left( e \right) = \left( {{n_1} - {n_2}} \right)e$
Indeed, there are elementary particles other than protons and electrons, which carry charge. But all the elementary particles have charges which are integral multiple of $e$.. Thus charge on any object is always an integral multiple of $e$ and can be changed in steps of$e$, i.e. charge is quantized.
Note:
The step size $e$ is usually so small that we can easily neglect the quantization. If $l\,\mu \,C$ contains $n$ units of basic charge $e$ where,
$n = \dfrac{{l\,\mu \,C}}{{1.6 \times {{10}^{ - 19C}}}} = 6 \times {10^{12}}$
The step size is thus very small as compared to the charges usually found. Hence in many cases, we assume a continuous charge variation.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
