
Assertion (A) : A null vector is a vector whose magnitude is zero and direction is arbitrary
Reason(R) : A null vector does not exist
(A) Both A and R are true and R is the correct explanation of A.
(B) Both A and R are true, but R is not the correct explanation of A.
(C) A is true but R is False.
(D) A is False but R is true.
Answer
232.8k+ views
Hint:
A vector is a geometric entity with a magnitude and a direction. A null vector is a vector with 0 length and an undetermined direction. Its components are all equal to 0. In addition to this, the null vector is also known as the zero vector.
Complete step by step solution:
A vector in space with a magnitude of zero and an unclear direction is known as a zero vector or a null vector. An example of a zero vector sign is $\vec{0}=(0,0,0)$in three dimensional space and we can also write it in two dimensional space i.e. $\vec{0}=(0,0)$.
A null vector has zero length and doesn’t point in any directions, hence each of its components is equal to 0. As the outcome of adding a zero vector to any other non-zero vector always equals the original non-zero vector, it is also known as the additive validity of the set of vectors.
In the given question considering what we discussed above, the assertion is true but the reason is false because a null vector does exist.
For example two equal vectors pointing opposite to each other forms a null vector with an arbitrary direction.
Therefore, the correct option is C.
Note:
A zero vector has no value and points in no particular direction. In vector algebra, a null vector is an additive identity. The product of a zero vector with some other vectors is always zero. To tackle these problems we need to have a proper understanding of the concept of vectors.
A vector is a geometric entity with a magnitude and a direction. A null vector is a vector with 0 length and an undetermined direction. Its components are all equal to 0. In addition to this, the null vector is also known as the zero vector.
Complete step by step solution:
A vector in space with a magnitude of zero and an unclear direction is known as a zero vector or a null vector. An example of a zero vector sign is $\vec{0}=(0,0,0)$in three dimensional space and we can also write it in two dimensional space i.e. $\vec{0}=(0,0)$.
A null vector has zero length and doesn’t point in any directions, hence each of its components is equal to 0. As the outcome of adding a zero vector to any other non-zero vector always equals the original non-zero vector, it is also known as the additive validity of the set of vectors.
In the given question considering what we discussed above, the assertion is true but the reason is false because a null vector does exist.
For example two equal vectors pointing opposite to each other forms a null vector with an arbitrary direction.
Therefore, the correct option is C.
Note:
A zero vector has no value and points in no particular direction. In vector algebra, a null vector is an additive identity. The product of a zero vector with some other vectors is always zero. To tackle these problems we need to have a proper understanding of the concept of vectors.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

