Answer
Verified
114.6k+ views
Hint: For solving this question we have to consider the concepts of heat engine, we have to use temperature in the standard unit of kelvin here. With the help of efficiency formula and work done by heat engine we will determine the value of X. Mainly, one must calculate efficiency and work done using efficiency.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Formula used:
1. \[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Where, \[\eta \] is the efficiency of the heat engine, \[{T_1}\] is the temperature at which it absorbs and \[{T_2}\] is the temperature at which it exhausts.
2. \[W = Q\eta \]
Where, \[W\]is work done by the heat engine and \[Q\]is the source heat in kilo calorie.
Complete answer:
Let us begin with the conversion of the temperature into standard units such as
\[{T_1} = {327^o}C = (327 + 273)K = 600K\]
\[{T_2} = {127^o}C = (127 + 273)K = 400K\]
So, let’s begin with calculating the efficiency of the heat engine, we have
\[\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}\]
Let us substitute all the given values in the formula above, we get
\[ \Rightarrow \eta = 1 - \dfrac{{400K}}{{600K}}\]
\[ \Rightarrow \eta = 1 - \dfrac{2}{3} = 1 - 0.66 = 0.34\]
\[ \Rightarrow \eta = 0.34\]
Now, we have to find work for per kilo calorie, for that we have a formula for work done as below:
\[W = Q\eta \]
But, the source heat is \[Q = H = 1kcal\]
Also, remember that
\[1kcal = 4.2 \times {10^3}joule\]
Let us put all these values in the formula for work done for calculating total work.
\[ \Rightarrow W = 4.2 \times {10^3}joule \times 0.34\]
\[ \Rightarrow W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
But here work done is given in the form of \[X\]. Therefore,
\[X = W = {\rm{1}}{\rm{.428}} \times {10^3}joule\]
\[X = 1428J\]
Therefore, \[\dfrac{X}{5}\] is given by:
\[\dfrac{X}{5} = \dfrac{{1428J}}{5} = 285.6J\]
So, the answer is \[285.6J\].
Note: Here, the question is designed in such a way that there is just one concept that has been used to work efficiently. We have to recall all the important points from the heat engine and apply it over here.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
A solid sphere of radius r made of a soft material class 11 physics JEE_MAIN
A particle performs SHM of amplitude A along a straight class 11 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions