
An artificial satellite revolves around the earth at a height of \[1000{\text{ km}}\]. The radius of earth is \[6.38 \times \;\,{10^3}\;{\text{km}}\]. Mass of the earth \[ = 6 \times {10^{24}}{\text{kg}}\]; \[G = 6.67 \times {10^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}}\]. Find the orbital speed and period of revolution of the satellite.
(A) \[7364{\text{ m}}{{\text{s}}^{ - 1}},6297{\text{s}}\]
(B) \[1064{\text{ m}}{{\text{s}}^{ - 1}},6297{\text{s}}\]
(C) \[9364{\text{ m}}{{\text{s}}^{ - 1}},9297{\text{s}}\]
(D) \[8364{\text{ m}}{{\text{s}}^{ - 1}},7297{\text{s}}\]
Answer
496.2k+ views
Hint: When a satellite is thrown into the orbit of the earth, it experiences gravitational pull. And when the centrifugal force is balanced out by the gravitational force, it starts to revolve around the earth in a certain orbit.
The velocity with which a satellite revolves around the earth is known as orbital velocity. And Time taken to complete one revolution around the earth by satellite is known as the Time period.
Complete step by step answer:
Write the expression of the orbital speed \[{v_0}\] for an artificial satellite,
\[{v_0} = \sqrt {\dfrac{{GM}}{{R + h}}} \]
Here, \[M\] is the mass of earth, \[G\] is the gravitational constant, \[R\] is the radius of the earth and \[h\] is the height of the satellite from the earth.
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\], \[6.67 \times {10^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}}\] for\[G\], \[6 \times {10^{24}}{\text{kg}}\] for \[M\] and \[1000{\text{ km}}\] for\[h\].
\[\
{v_0} = \sqrt {\dfrac{{(6.67 \times {{10}^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}})(6 \times {{10}^{24}}{\text{kg)}}}}{{(6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right){\text{)}}}}} \\
= 7364\;{\text{m}}{{\text{s}}^{ - 1}} \\
\ \]
Write the expression for the Period of revolution \[T\] of satellite.
\[T = \dfrac{{2\pi (R + h)}}{{{v_0}}}\]
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\],\[1000{\text{ km}}\] for \[h\] and \[7364\;{\text{m}}{{\text{s}}^{ - 1}}\] for \[{v_0}\]
\[\
T = \dfrac{{2\pi (6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right))}}{{7364\;{\text{m}}{{\text{s}}^{ - 1}}}} \\
= 6297{\text{ s}} \\
\ \]
Therefore,\[7364\;{\text{m}}{{\text{s}}^{ - 1}}\], \[6297{\text{ s}}\]are orbital speed and period of revolution of the satellite respectively.
So, the correct answer is “Option A”.
Note:
The expression for the orbital velocity is used to calculate the orbital velocity of the satellite and the expression for the Time period is used to calculate the period of revolution.
Standardize the units of the values used in the expressions of Orbital velocity and time period.
The velocity with which a satellite revolves around the earth is known as orbital velocity. And Time taken to complete one revolution around the earth by satellite is known as the Time period.
Complete step by step answer:
Write the expression of the orbital speed \[{v_0}\] for an artificial satellite,
\[{v_0} = \sqrt {\dfrac{{GM}}{{R + h}}} \]
Here, \[M\] is the mass of earth, \[G\] is the gravitational constant, \[R\] is the radius of the earth and \[h\] is the height of the satellite from the earth.
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\], \[6.67 \times {10^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}}\] for\[G\], \[6 \times {10^{24}}{\text{kg}}\] for \[M\] and \[1000{\text{ km}}\] for\[h\].
\[\
{v_0} = \sqrt {\dfrac{{(6.67 \times {{10}^{11}}{\text{ N}}{{\text{m}}^2}{\text{k}}{{\text{g}}^{{\text{ - 2}}}})(6 \times {{10}^{24}}{\text{kg)}}}}{{(6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right){\text{)}}}}} \\
= 7364\;{\text{m}}{{\text{s}}^{ - 1}} \\
\ \]
Write the expression for the Period of revolution \[T\] of satellite.
\[T = \dfrac{{2\pi (R + h)}}{{{v_0}}}\]
Substitute \[6.38 \times \;\,{10^3}\;{\text{km}}\] for\[R\],\[1000{\text{ km}}\] for \[h\] and \[7364\;{\text{m}}{{\text{s}}^{ - 1}}\] for \[{v_0}\]
\[\
T = \dfrac{{2\pi (6.38 \times \;\,{{10}^3}\;{\text{km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right) + 1000{\text{ km}}\left( {\dfrac{{{{10}^3}{\text{m}}}}{{1{\text{km}}}}} \right))}}{{7364\;{\text{m}}{{\text{s}}^{ - 1}}}} \\
= 6297{\text{ s}} \\
\ \]
Therefore,\[7364\;{\text{m}}{{\text{s}}^{ - 1}}\], \[6297{\text{ s}}\]are orbital speed and period of revolution of the satellite respectively.
So, the correct answer is “Option A”.
Note:
The expression for the orbital velocity is used to calculate the orbital velocity of the satellite and the expression for the Time period is used to calculate the period of revolution.
Standardize the units of the values used in the expressions of Orbital velocity and time period.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
