![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A magnetic dipole in a constant magnetic field has:
(A) Minimum potential energy when the torque is maximum.
(B) Zero potential energy when the torque is minimum.
(C) Zero potential energy when the torque is maximum.
(D) Maximum potential energy when the torque is maximum.
Answer
124.8k+ views
Hint: We are given the magnetic dipole in a constant magnetic field and are asked about the change in torque when there is a change in potential energy. Thus, we will take a formula of potential energy and then discuss the change in it. Then, we will take a formula for torque on a magnetic dipole. Then finally we will try to connect the change in both these parameters.
Formula Used
$U = - \vec \mu .\vec B = - \mu B\cos \theta $
Where, $U$ is the potential energy on a magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ .
$\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
Where, $\vec \tau $ is the torque acting on the magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ . $\hat n$ is the direction of the torque which is perpendicular to the plane containing $\vec \mu $ and $\vec B$ .
Step By Step Solution
We know,
Potential energy of the magnetic dipole, $U = - \vec \mu .\vec B = - \mu B\cos \theta $
Now,
The magnetic dipole moment ($\vec \mu $) and magnetic field ($\vec B$) are constant parameters, only the $\cos \theta $ is the only varying parameter.
Now,
$\cos \theta $ is maximum when $\cos \theta = 1$ or $\theta = 2n\pi ;n = 0,1,2,...$ and then $\cos \theta $ is minimum when $\cos \theta = - 1$ or $\theta = (2n - 1)\pi ;n = 0,1,2,3,...$.
Also,
We know,
Torque acting on the magnetic dipole, $\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
From this, we will only take the magnitude of the torque in order to compare the change with the potential energy change.
Thus,
$|\vec \tau | = \mu B\sin \theta $
Out of here also only the $\sin \theta $ is the varying parameter.
Now,
$\sin \theta $ is maximum when $\sin \theta = 1$ or $\theta = (2n + 1)\dfrac{\pi }{2};n = 1,2,3,...$ and $\sin \theta $ is minimum when $\sin \theta = 0$ or $\theta = n\pi ;n = 0,1,2,...$.
Thus, we can say that the points when the value of $\cos \theta $ is maximum when $\sin \theta $ is minimum and vice versa. Broadly speaking, when potential energy is zero, then the torque is maximum.
Hence, the answer is (C).
Note: We were asked to find the relation between potential energy and torque of the magnetic dipole. If we were asked for the relation between some other parameters, the calculations would be somewhat different but the workflow remains the same.
Formula Used
$U = - \vec \mu .\vec B = - \mu B\cos \theta $
Where, $U$ is the potential energy on a magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ .
$\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
Where, $\vec \tau $ is the torque acting on the magnetic dipole, $\vec \mu $ is the magnetic dipole moment of the dipole and $\vec B$ is the uniform magnetic field in which the magnetic dipole is placed and $\theta $ is the angle between $\mu $ and $B$ . $\hat n$ is the direction of the torque which is perpendicular to the plane containing $\vec \mu $ and $\vec B$ .
Step By Step Solution
We know,
Potential energy of the magnetic dipole, $U = - \vec \mu .\vec B = - \mu B\cos \theta $
Now,
The magnetic dipole moment ($\vec \mu $) and magnetic field ($\vec B$) are constant parameters, only the $\cos \theta $ is the only varying parameter.
Now,
$\cos \theta $ is maximum when $\cos \theta = 1$ or $\theta = 2n\pi ;n = 0,1,2,...$ and then $\cos \theta $ is minimum when $\cos \theta = - 1$ or $\theta = (2n - 1)\pi ;n = 0,1,2,3,...$.
Also,
We know,
Torque acting on the magnetic dipole, $\vec \tau = \vec \mu \times \vec B = \mu B\sin \theta \hat n$
From this, we will only take the magnitude of the torque in order to compare the change with the potential energy change.
Thus,
$|\vec \tau | = \mu B\sin \theta $
Out of here also only the $\sin \theta $ is the varying parameter.
Now,
$\sin \theta $ is maximum when $\sin \theta = 1$ or $\theta = (2n + 1)\dfrac{\pi }{2};n = 1,2,3,...$ and $\sin \theta $ is minimum when $\sin \theta = 0$ or $\theta = n\pi ;n = 0,1,2,...$.
Thus, we can say that the points when the value of $\cos \theta $ is maximum when $\sin \theta $ is minimum and vice versa. Broadly speaking, when potential energy is zero, then the torque is maximum.
Hence, the answer is (C).
Note: We were asked to find the relation between potential energy and torque of the magnetic dipole. If we were asked for the relation between some other parameters, the calculations would be somewhat different but the workflow remains the same.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)