Answer
Verified
461.4k+ views
Hint: The pressure due to applied force is the ratio of magnitude of force and the area of the cross section on which the force is applied.
\[{\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{area}}\,{\text{of}}\,{\text{cross}}\,{\text{section}}}}\]
Complete step by step answer:
According to Newton’s law of gravitation, the gravitational force exerted on the car of mass m is given by the equation,
\[F = mg\]
Here, g is acceleration due to gravity.
The pressure exerted on the smaller piston of the hydraulic lift is the ratio of force exerted on the car to the area of the cross section of the smaller piston.
Therefore,
\[P = \dfrac{F}{A}\]
\[ \Rightarrow P = \dfrac{{mg}}{A}\]
Substitute \[3500\,kg\] for m, \[9.8\,m/{s^2}\] for g and \[500\,c{m^2}\] for A in the above equation.
\[P = \dfrac{{\left( {3500\,kg} \right)\left( {9.8\,m/{s^2}} \right)}}{{\left( {500\,c{m^2}} \right)\left( {\dfrac{{{{10}^{ - 4}}\,{m^2}}}{{1\,c{m^2}}}} \right)}}\]
\[ \Rightarrow P = \dfrac{{34300\,kg\,m/{s^2}}}{{500 \times {{10}^{ - 4}}\,{m^2}}}\,\]
\[\therefore P = 6.86 \times {10^5}\,N/{m^2}\]
Therefore, the pressure experienced by the smaller piston is \[6.86 \times {10^5}\,N/{m^2}\].
Note:
The weight of the object is the gravitational force exerted on the object. Sometimes students misunderstand between the mass and the weight of the object. 3500 kg is the mass of the car and not the weight. Therefore, you need to calculate the weight of the car by multiplying its mass by the acceleration due to gravity. Also, \[1\,cm = {10^{ - 2}}\,m\], therefore, \[1\,c{m^2} = {\left( {{{10}^{ - 2}}\,m} \right)^2} = {10^{ - 4}}\,{m^2}\].
\[{\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{area}}\,{\text{of}}\,{\text{cross}}\,{\text{section}}}}\]
Complete step by step answer:
According to Newton’s law of gravitation, the gravitational force exerted on the car of mass m is given by the equation,
\[F = mg\]
Here, g is acceleration due to gravity.
The pressure exerted on the smaller piston of the hydraulic lift is the ratio of force exerted on the car to the area of the cross section of the smaller piston.
Therefore,
\[P = \dfrac{F}{A}\]
\[ \Rightarrow P = \dfrac{{mg}}{A}\]
Substitute \[3500\,kg\] for m, \[9.8\,m/{s^2}\] for g and \[500\,c{m^2}\] for A in the above equation.
\[P = \dfrac{{\left( {3500\,kg} \right)\left( {9.8\,m/{s^2}} \right)}}{{\left( {500\,c{m^2}} \right)\left( {\dfrac{{{{10}^{ - 4}}\,{m^2}}}{{1\,c{m^2}}}} \right)}}\]
\[ \Rightarrow P = \dfrac{{34300\,kg\,m/{s^2}}}{{500 \times {{10}^{ - 4}}\,{m^2}}}\,\]
\[\therefore P = 6.86 \times {10^5}\,N/{m^2}\]
Therefore, the pressure experienced by the smaller piston is \[6.86 \times {10^5}\,N/{m^2}\].
Note:
The weight of the object is the gravitational force exerted on the object. Sometimes students misunderstand between the mass and the weight of the object. 3500 kg is the mass of the car and not the weight. Therefore, you need to calculate the weight of the car by multiplying its mass by the acceleration due to gravity. Also, \[1\,cm = {10^{ - 2}}\,m\], therefore, \[1\,c{m^2} = {\left( {{{10}^{ - 2}}\,m} \right)^2} = {10^{ - 4}}\,{m^2}\].
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE
What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE