Answer
Verified
114.9k+ views
Hint: In this question, we know the direction of wave propagation in a medium and the equation of wave. So, we can compare this with the standard equation of wave to understand the direction which will determine the sign.
Complete step by step answer:
The equation of wave is given as \[s(x,t) = {s_m}\cos (kx \pm \omega t)\] and in the question it is mentioned that the wave is travelling in negative x-axis direction , so the equation of wave will become
\[s(x,t) = {s_m}\cos (kx + \omega t)\]
Hence the correct sign in front of \[\omega \]will be positive.
Additional information:
The waves can be classified into two types on the basis of direction of medium particles relative to wave propagation direction. They are longitudinal and transverse waves.
Longitudinal waves have a distinct feature that is the direction of the particles of medium is the same as the direction or we can say parallel to the direction of motion of this wave. They produce compression (part where the particles are close) and rarefaction (where particles are spread). Example is sound waves.
In transverse waves, the movement of particles of medium is in perpendicular direction to the wave propagation. Example is electromagnetic waves or waves in ropes. They form crests (maximum displacement in positive direction) and trough (maximum displacement in negative direction). They are produced in solids generally. They cannot be generated in gases.
The distance between two successive crests or two successive troughs in case of transverse wave and in longitudinal, the distance between two successive compression or two successive rarefactions is called wavelength of that particular wave.
Note:
A longitudinal wave y at position x and time t can be represented in the form of wave equation as
$y(x,t) = {y_0}\cos (\omega t \pm kx)$
where y is the displacement of the wave, x is the distance travelled by the wave from the source and $\omega $ is the angular velocity of the wave.
Complete step by step answer:
The equation of wave is given as \[s(x,t) = {s_m}\cos (kx \pm \omega t)\] and in the question it is mentioned that the wave is travelling in negative x-axis direction , so the equation of wave will become
\[s(x,t) = {s_m}\cos (kx + \omega t)\]
Hence the correct sign in front of \[\omega \]will be positive.
Additional information:
The waves can be classified into two types on the basis of direction of medium particles relative to wave propagation direction. They are longitudinal and transverse waves.
Longitudinal waves have a distinct feature that is the direction of the particles of medium is the same as the direction or we can say parallel to the direction of motion of this wave. They produce compression (part where the particles are close) and rarefaction (where particles are spread). Example is sound waves.
In transverse waves, the movement of particles of medium is in perpendicular direction to the wave propagation. Example is electromagnetic waves or waves in ropes. They form crests (maximum displacement in positive direction) and trough (maximum displacement in negative direction). They are produced in solids generally. They cannot be generated in gases.
The distance between two successive crests or two successive troughs in case of transverse wave and in longitudinal, the distance between two successive compression or two successive rarefactions is called wavelength of that particular wave.
Note:
A longitudinal wave y at position x and time t can be represented in the form of wave equation as
$y(x,t) = {y_0}\cos (\omega t \pm kx)$
where y is the displacement of the wave, x is the distance travelled by the wave from the source and $\omega $ is the angular velocity of the wave.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
A solid sphere of radius r made of a soft material class 11 physics JEE_MAIN
A particle performs SHM of amplitude A along a straight class 11 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions