Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.3 Polynomials

ffImage
banner
widget title icon
Latest Updates

Class 9 Maths Exercise 2.3 – Step-by-Step Solutions

Class 9 Maths Chapter 2 Exercise 2.3 focuses on important problems from the Polynomials chapter and helps students understand how to solve different types of polynomial questions correctly. These NCERT Class 9 Maths Chapter 2 Exercise 2.3 solutions explain each step clearly so students can follow the method without confusion. The Exercise 2.3 Class 9 solutions are written as per the CBSE exam pattern and cover all questions given in the textbook. Practising Polynomials Class 9 Exercise 2.3 helps students build confidence and improve accuracy while solving similar problems in exams. All Class 9 Maths Ex 2.3 answers are prepared by subject experts at Vedantu and follow the latest NCERT guidelines. Students can use these solutions to clear doubts quickly and understand how marks are awarded for each step in the solution.

toc-symbolTable of Content
toggle-arrow
Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.3 Polynomials
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials in One Shot | CBSE Class 9 Maths Chapter 2 | CBSE lX - One Shot | Vedantu Class 9 and 10
5.2K likes
112.6K Views
4 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials L-2 | Factor Theorem and Algebraic Identities | CBSE Class 9 Math - Umang 2021 | Vedantu
7K likes
137.6K Views
4 years ago

NCERT Class 9 Maths Chapter 2 Exercise 2.3 solutions

1. Determine which of the following polynomials has\[\left( {x + 1} \right)\] a factor:

i. \[{x^3} + {x^2} + x + 1\]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^3} + {x^2} + x + 1\]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} + \left( { - 1} \right) + 1\]

\[p\left( { - 1} \right) =  - 1 + 1 - 1 + 1\]

\[p\left( { - 1} \right) = 0\]

Therefore, by the Factor Theorem, \[x + 1\] is a factor of \[{x^3} + {x^2} + x + 1\].

ii. \[{x^4} + {x^3} + {x^2} + x + 1\]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^4} + {x^3} + {x^2} + x + 1\]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^4} + {\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} + \left( { - 1} \right) + 1\]

\[p\left( { - 1} \right) = 1 - 1 + 1 - 1 + 1\]

\[p\left( { - 1} \right) = 1\]

Therefore, by the Factor Theorem, \[x + 1\] is not a factor of \[{x^4} + {x^3} + {x^2} + x + 1\].

iii. \[{x^4} + 3{x^3} + 3{x^2} + x + 1\]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^4} + 3{x^3} + 3{x^2} + x + 1\]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^4} + 3{\left( { - 1} \right)^3} + 3{\left( { - 1} \right)^2} + \left( { - 1} \right) + 1\]

\[p\left( { - 1} \right) = 1 - 3 + 3 - 1 + 1\]

\[p\left( { - 1} \right) = 1\]

Therefore, by the Factor Theorem, \[x + 1\] is not a factor of \[{x^4} + 3{x^3} + 3{x^2} + x + 1\].

iv. \[{x^3} + {x^2} - \left( {2 + \sqrt 2 } \right)x + \sqrt 2 \]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^3} + {x^2} - \left( {2 + \sqrt 2 } \right)x + \sqrt 2 \]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} - \left( {2 + \sqrt 2 } \right)\left( { - 1} \right) + \sqrt 2 \]

\[p\left( { - 1} \right) =  - 1 + 1 + 2 - \sqrt 2  + \sqrt 2 \]

\[p\left( { - 1} \right) = 2 + 2\sqrt 2 \]

Therefore, by the Factor Theorem, \[x + 1\] is not a factor of\[{x^3} + {x^2} - \left( {2 + \sqrt 2 } \right)x + \sqrt 2 \].

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

i. \[p\left( x \right) = 2{x^3} + {x^2} - 2x - 1\], \[g\left( x \right) = x + 1\]

Ans: Given that, 

\[p\left( x \right) = 2{x^3} + {x^2} - 2x - 1\]

\[g\left( x \right) = x + 1\]

We know that, 

Zero of \[g\left( x \right)\] is \[ - 1\]

Now,

\[p\left( { - 1} \right) = 2{\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} - 2\left( { - 1} \right) - 1\]

\[p\left( { - 1} \right) =  - 2 + 1 + 2 - 1\]

\[p\left( { - 1} \right) = 0\]

Therefore, \[g\left( x \right) = x + 1\] is a factor of\[p\left( x \right) = 2{x^3} + {x^2} - 2x - 1\].


ii. \[p\left( x \right) = {x^3} + 3{x^2} + 3x + 1\], \[g\left( x \right) = x + 2\]

Ans: Given that, 

\[p\left( x \right) = {x^3} + 3{x^2} + 3x + 1\]

\[g\left( x \right) = x + 2\]

We know that, 

Zero of \[g\left( x \right)\] is \[ - 2\]

Now,

\[p\left( { - 2} \right) = {\left( { - 2} \right)^3} + 3{\left( { - 2} \right)^2} + 3\left( { - 2} \right) + 1\]

\[p\left( { - 2} \right) =  - 8 + 12 - 6 + 1\]

\[p\left( { - 2} \right) =  - 1\]

Therefore, \[g\left( x \right) = x + 2\] is not a factor of \[p\left( x \right) = {x^3} + 3{x^2} + 3x + 1\].

iii. \[p\left( x \right) = {x^3} - 4{x^2} + x + 6\], \[g\left( x \right) = x - 3\]

Ans: Given that, 

\[p\left( x \right) = {x^3} - 4{x^2} + x + 6\]

\[g\left( x \right) = x - 3\]

We know that, 

Zero of \[g\left( x \right)\] is \[3\]

Now,

\[p\left( 3 \right) = {\left( 3 \right)^3} - 4{\left( 3 \right)^2} + \left( 3 \right) + 6\]

\[p\left( 3 \right) = 27 - 36 + 3 + 6\]

\[p\left( 3 \right) = 0\]

Therefore, \[g\left( x \right) = x - 3\] is a factor of \[p\left( x \right) = {x^3} - 4{x^2} + x + 6\].


3. Find the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right)\] in each of the following cases:

i. \[p\left( x \right) = {x^2} + x + k\]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = {x^2} + x + k\]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = {\left( 1 \right)^2} + \left( 1 \right) + k = 0\]

\[ \Rightarrow 1 + 1 + k = 0\]

\[ \Rightarrow k =  - 2\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = {x^2} + x + k\] is \[ - 2\].


ii. \[p\left( x \right) = 2{x^2} + kx + \sqrt 2 \]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = 2{x^2} + kx + \sqrt 2 \]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = 2{\left( 1 \right)^2} + k\left( 1 \right) + \sqrt 2  = 0\]

\[ \Rightarrow 2 + k + \sqrt 2  = 0\]

\[ \Rightarrow k =  - \left( {2 + \sqrt 2 } \right)\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = 2{x^2} + kx + \sqrt 2 \] is \[ - \left( {2 + \sqrt 2 } \right)\].


iii. \[p\left( x \right) = k{x^2} - \sqrt 2 x + 1\]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} - \sqrt 2 x + 1\]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = k{\left( 1 \right)^2} - \sqrt 2 \left( 1 \right) + 1 = 0\]

\[ \Rightarrow k - \sqrt 2  + 1 = 0\]

\[ \Rightarrow k = \sqrt 2  - 1\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} - \sqrt 2 x + 1\] is $({\sqrt 2}-1)$.


iv. \[p\left( x \right) = k{x^2} + 3x + k\]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} + 3x + k\]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = k{\left( 1 \right)^2} + 3\left( 1 \right) + k = 0\]

\[ \Rightarrow k - 3 + k = 0\]

\[ \Rightarrow k = \frac{3}{2}\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} + 3x + k\] is \[\frac{3}{2}\].

4. Factorise:

i. \[12{x^2} - 7x + 1\]

Ans: Given that, 

\[p\left( x \right) = 12{x^2} - 7x + 1\]

Splitting the middle term

\[ \Rightarrow 12{x^2} - 4x + 3x + 1\]

\[ \Rightarrow 4x\left( {3x - 1} \right) - 1\left( {3x - 1} \right)\]

\[ \Rightarrow \left( {3x - 1} \right)\left( {4x - 1} \right)\]

Therefore,  \[12{x^2} - 4x + 3x + 1 = \left( {3x - 1} \right)\left( {4x - 1} \right)\].

ii. \[2{x^2} + 7x + 3\]

Ans: Given that, 

\[p\left( x \right) = 2{x^2} + 7x + 3\]

Splitting the middle term

\[ \Rightarrow 2{x^2} + x + 6x + 3\]

\[ \Rightarrow x\left( {2x + 1} \right) + 3\left( {2x - 1} \right)\]

\[ \Rightarrow \left( {2x + 1} \right)\left( {x + 3} \right)\]

Therefore, \[2{x^2} + x + 6x + 3 = \left( {2x + 1} \right)\left( {x + 3} \right)\].

iii. \[6{x^2} + 5x - 6\]

Ans: Given that, 

\[p\left( x \right) = 6{x^2} + 5x - 6\]

Splitting the middle term

\[ \Rightarrow 6{x^2} + 9x - 4x - 6\]

\[ \Rightarrow 3x\left( {2x + 3} \right) - 2\left( {2x + 3} \right)\]

\[ \Rightarrow \left( {2x + 3} \right)\left( {3x - 2} \right)\]

Therefore,  \[6{x^2} + 9x - 4x - 6 = \left( {2x + 3} \right)\left( {3x - 2} \right)\].

iv. \[3{x^2} - x - 4\]

Ans: Given that, 

\[p\left( x \right) = 3{x^2} - x - 4\]

Splitting the middle term

\[ \Rightarrow 3{x^2} - 4x + 3x - 4\]

\[ \Rightarrow x\left( {3x - 4} \right) + 1\left( {3x - 4} \right)\]

\[ \Rightarrow \left( {3x - 4} \right)\left( {x + 1} \right)\]

Therefore,  \[3{x^2} - 4x + 3x - 4 = \left( {3x - 4} \right)\left( {x + 1} \right)\].

5. Factorise:

i. \[{x^3} - 2{x^2} - x + 2\]

Ans: Given that, 

\[p\left( x \right) = {x^3} - 2{x^2} - x + 2\]

Rearranging the above,

\[ \Rightarrow {x^3} - x - 2{x^2} + 2\]

\[ \Rightarrow x\left( {{x^2} - 1} \right) - 2\left( {{x^2} - 1} \right)\]

\[ \Rightarrow \left( {{x^2} - 1} \right)\left( {x - 2} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)\]

Therefore, \[{x^3} - 2{x^2} - x + 2 = \left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)\].

ii. \[{x^3} - 3{x^2} - 9x - 5\]

Ans: Given that, 

\[p\left( x \right) = {x^3} - 3{x^2} - 9x - 5\]

\[ \Rightarrow {x^3} + {x^2} - 4{x^2} - 4x - 5x - 5\]

\[ \Rightarrow {x^2}\left( {x + 1} \right) - 4x\left( {x + 1} \right) - 5\left( {x + 1} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} - 4x - 5} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} - 5x + x - 5} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left[ {x\left( {x - 5} \right) + 1\left( {x - 5} \right)} \right]\]

\[ \Rightarrow \left( {x + 1} \right)\left( {x + 1} \right)\left( {x - 5} \right)\]

Therefore, \[{x^3} - 3{x^2} - 9x - 5 = \left( {x + 1} \right)\left( {x + 1} \right)\left( {x - 5} \right)\].

iii. \[{x^3} + 13{x^2} + 32x + 20\]

Ans: Given that, 

\[p\left( x \right) = {x^3} + 13{x^2} + 32x + 20\]

\[ \Rightarrow {x^3} + {x^2} + 12{x^2} + 12x + 20x + 20\]

\[ \Rightarrow {x^2}\left( {x + 1} \right) + 12x\left( {x + 1} \right) + 20\left( {x + 1} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} + 12x + 20} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} + 2x + 10x + 20} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left[ {x\left( {x + 2} \right) + 10\left( {x + 2} \right)} \right]\]

\[ \Rightarrow \left( {x + 1} \right)\left( {x + 10} \right)\left( {x + 2} \right)\] 

Therefore, \[{x^3} + 13{x^2} + 32x + 20 = \left( {x + 1} \right)\left( {x + 10} \right)\left( {x + 2} \right)\].

iv. \[2{y^3} + {y^2} - 2y - 1\]

Ans: Given that, 

\[p\left( y \right) = 2{y^3} + {y^2} - 2y - 1\]

\[ \Rightarrow 2{y^3} - 2{y^2} + 3{y^2} - 3y + y - 1\]

\[ \Rightarrow 2{y^2}\left( {y - 1} \right) + 3y\left( {y - 1} \right) + 1\left( {y - 1} \right)\]

\[ \Rightarrow \left( {y - 1} \right)\left( {2{y^2} + 3y + 1} \right)\]

\[ \Rightarrow \left( {y - 1} \right)\left( {2{y^2} + 2y + y + 1} \right)\]

\[ \Rightarrow \left( {y - 1} \right)\left[ {2y\left( {y + 1} \right) + 1\left( {y + 1} \right)} \right]\]

\[ \Rightarrow \left( {y - 1} \right)\left( {2y + 1} \right)\left( {y + 1} \right)\]

Therefore, \[2{y^3} + {y^2} - 2y - 1 = \left( {y - 1} \right)\left( {2y + 1} \right)\left( {y + 1} \right)\].


Conclusion

Class 9 Maths Ex 2.3 of Chapter 2 - Polynomials, is crucial for a solid foundation in math. Understanding the concept of factoring quadratic expressions is a key takeaway. Vedantu's NCERT solutions can guide you in conquering quadratic equations using factorization. Regular practice with NCERT solutions provided by platforms like Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward. Consistent practice and understanding will lead to proficiency in AP-related problems


NCERT Solutions for Class 9 Maths Chapter 2 Exercises

Exercise

Number of Questions

Exercise 2.1

5 Questions & Solutions

Exercise 2.2

4 Questions & Solutions

Exercise 2.4

5 Questions & Solutions


CBSE Class 9 Maths Chapter 2 Polynomials Other Study Materials


Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for Class 9 Maths


WhatsApp Banner

FAQs on NCERT Solutions for Class 9 Maths Chapter 2 Exercise 2.3 Polynomials

1. What are polynomials for class 9?

Polynomials are algebraic expressions consisting of variables and coefficients, combined using addition, subtraction, and multiplication. For example, 3x² + 2x - 5 is a polynomial relevant to the Class 9 syllabus.


2. How to factorise polynomials class 9?

To factorise polynomials, identify common factors or apply methods like grouping. NCERT Solutions provide step-by-step guidance to understand and master the process of factorisation.


3. What is a polynomial and examples?

A polynomial is a mathematical expression made up of variables raised to whole number powers. Examples include 4x + 7 and x³ - 4x² + 6. These are core concepts in the Class 9 curriculum.


4. Where can I find polynomials class 9 NCERT solutions?

You can find detailed NCERT Solutions for polynomials in Class 9 on Vedantu's website, offering clear explanations and solved exercises to enhance understanding.


5. Can I download a polynomials class 9 PDF?

Yes, a Free PDF of Class 9 polynomials is available on Vedantu, which includes all solutions and extra questions for offline study and practice.


6. What is included in class 9 maths polynomials solutions?

Class 9 maths polynomials solutions include step-by-step answers, formulas, graphs, and explanations of common mistakes, helping students prepare for exams effectively.


7. Which is the hardest chapter in maths class 9?

Many students find polynomials challenging due to concepts like factorisation and graphing. It's crucial to practice regularly with NCERT Solutions to overcome difficulties.


8. What are polynomials class 9 questions with solutions?

Polynomials class 9 questions with solutions are problems provided in NCERT materials and resources from Vedantu, designed to reinforce concepts through practice and examples.


9. How do polynomials relate to other chapters in class 9?

Polynomials serve as a foundational concept for future chapters like Coordinate Geometry and Quadratic Equations, emphasizing their importance in the Class 9 maths curriculum.


10. Where can I find polynomials class 9 identities?

Polynomials class 9 identities can be found in NCERT Solutions, providing essential formulas and identities to aid students in solving problems effectively.