Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 8 Maths Chapter 12 Factorisation Ex 12.3

ffImage
banner

NCERT Solutions for Class 8 Maths Chapter 12 (EX 12.3)

Free PDF download of NCERT Solutions for Class 8 Maths Chapter 12 Exercise 12.3 (EX 12.3) and all chapter exercises at one place prepared by an expert teacher as per NCERT (CBSE) books guidelines. Class 8 Maths Chapter 12 Factorisation Exercise 12.3 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Every NCERT Solution is provided to make the study simple and interesting. Subjects like Science, Maths, English will become easy to study if you have access to NCERT Solution for Class 8 Science , Maths solutions and solutions of other subjects. You can also download NCERT Solutions for Class 8 Maths to help you to revise complete syllabus and score more marks in your examinations.


Access NCERT Solutions for Class 8 Maths Chapter 12 - Factorization

Refer to page 10 for exercise 12.3 in the PDF.

1.  Carry out the following divisions.

i. Find the division \[28{x^4} \div 56x\].

Ans: To find the division \[28{x^4} \div 56x\], expand both the expressions.

The expansion of \[28{x^4}\] is \[28{x^4} = 2 \times 2 \times 7 \times x \times x \times x \times x\].

The expansion of \[56x\] is \[56x = 2 \times 2 \times 2 \times 7 \times x\].

To find the division \[28{x^4} \div 56x\], divide the expansion of \[28{x^4}\] by \[56x\].

\[28{x^4} \div 56x = \dfrac{{2 \times 2 \times 7 \times x \times x \times x \times x}}{{2 \times 2 \times 2 \times 7 \times x}}\]

\[28{x^4} \div 56x = \dfrac{{{x^3}}}{2}\]

The value of \[28{x^4} \div 56x\] is \[\dfrac{{{x^3}}}{2}\].

ii. Find the division \[ - 36{y^3} \div 9{y^2}\].

Ans: To find the division \[ - 36{y^3} \div 9{y^2}\], expand both the expressions.

The expansion of \[ - 36{y^3}\] is \[ - 36{y^3} =  - 2 \times 2 \times 3 \times 3 \times y \times y \times y\].

The expansion of \[9{y^2}\] is \[9{y^2} = 3 \times 3 \times y \times y\].

To find the division \[ - 36{y^3} \div 9{y^2}\], divide the expansion of \[ - 36{y^3}\] by \[9{y^2}\].

\[ - 36{y^3} \div 9{y^2} = \dfrac{{ - 2 \times 2 \times 3 \times 3 \times y \times y \times y}}{{3 \times 3 \times y \times y}}\]

\[ - 36{y^3} \div 9{y^2} =  - 4y\]

The value of \[ - 36{y^3} \div 9{y^2}\] is \[ - 4y\].

iii. Find the division \[66p{q^2}{r^3} \div 11q{r^2}\].

Ans: To find the division \[66p{q^2}{r^3} \div 11q{r^2}\], expand both the expressions.

The expansion of \[66p{q^2}{r^3}\] is \[66p{q^2}{r^3} = 2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r\].

The expansion of \[11q{r^2}\] is \[11q{r^2} = 11 \times q \times r \times r\].

To find the division \[66p{q^2}{r^3} \div 11q{r^2}\], divide the expansion of \[66p{q^2}{r^3}\] by \[11q{r^2}\].

\[66p{q^2}{r^3} \div 11q{r^2} = \dfrac{{2 \times 3 \times 11 \times p \times q \times q \times r \times r \times r}}{{11 \times q \times r \times r}}\]

\[66p{q^2}{r^3} \div 11q{r^2} = 6pqr\]

The value of \[66p{q^2}{r^3} \div 11q{r^2}\] is \[6pqr\].

iv. Find the division \[34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3}\].

Ans: To find the division \[34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3}\], expand both the expressions.

The expansion of \[34{x^3}{y^3}{z^3}\] is \[34{x^3}{y^3}{z^3} = 2 \times 17 \times x \times x \times x \times y \times y \times y \times z \times z \times z\].

The expansion of \[51x{y^2}{z^3}\] is \[51x{y^2}{z^3} = 3 \times 17 \times x \times y \times y \times z \times z \times z\].

To find the division \[34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3}\], divide the expansion of \[34{x^3}{y^3}{z^3}\] by \[51x{y^2}{z^3}\].

\[34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3} = \dfrac{{2 \times 17 \times x \times x \times x \times y \times y \times y \times z \times z \times z}}{{3 \times 17 \times x \times y \times y \times z \times z \times z}}\]

\[34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3} = \dfrac{2}{3}{x^2}y\]

The value of \[34{x^3}{y^3}{z^3} \div 51x{y^2}{z^3}\] is \[\dfrac{2}{3}{x^2}y\].

v. Find the division \[12{a^8}{b^8} \div 6{a^6}{b^4}\].

Ans: To find the division \[12{a^8}{b^8} \div \left( { - 6{a^6}{b^4}} \right)\], expand both the expressions.

The expansion of \[12{a^8}{b^8}\] is \[12{a^8}{b^8} = 2 \times 2 \times 3 \times {a^8} \times {b^8}\].

The expansion of \[ - 6{a^6}{b^4}\] is \[ - 6{a^6}{b^4} =  - 2 \times 3 \times {a^6} \times {b^4}\].

To find the division \[12{a^8}{b^8} \div \left( { - 6{a^6}{b^4}} \right)\], divide the expansion of \[12{a^8}{b^8}\] by \[6{a^6}{b^4}\].

\[12{a^8}{b^8} \div \left( { - 6{a^6}{b^4}} \right) = \dfrac{{2 \times 2 \times 3 \times {a^8} \times {b^8}}}{{ - 2 \times 3 \times {a^6} \times {b^4}}}\]

\[12{a^8}{b^8} \div \left( { - 6{a^6}{b^4}} \right) =  - 2{a^2}{b^4}\]

The value of \[12{a^8}{b^8} \div \left( { - 6{a^6}{b^4}} \right)\] is \[ - 2{a^2}{b^4}\].

2. Divide the given polynomial by the given monomial.

i. Find the division $\left( {5{x^2} - 6x} \right) \div 3x$.

Ans: The expression $5{x^2} - 6x$ can be written as $x\left( {5x - 6} \right)$.

Substitute $x\left( {5x - 6} \right)$ for $5{x^2} - 6x$ in $\left( {5{x^2} - 6x} \right) \div 3x$ and simplify using division.

\[\left( {5{x^2} - 6x} \right) \div 3x = \dfrac{{x\left( {5x - 6} \right)}}{{3x}}\]

\[\left( {5{x^2} - 6x} \right) \div 3x = \dfrac{1}{3}\left( {5x - 6} \right)\]

The value of $\left( {5{x^2} - 6x} \right) \div 3x$ is \[\dfrac{1}{3}\left( {5x - 6} \right)\].

ii. Find the division $\left( {3{y^8} - 4{y^6} + 5{y^4}} \right) \div {y^4}$.

Ans: The expression $3{y^8} - 4{y^6} + 5{y^4}$ can be written as ${y^4}\left( {3{y^4} - 4{y^2} + 5} \right)$.

Substitute ${y^4}\left( {3{y^4} - 4{y^2} + 5} \right)$ for $3{y^8} - 4{y^6} + 5{y^4}$ in $\left( {3{y^8} - 4{y^6} + 5{y^4}} \right) \div {y^4}$ and simplify using division.

\[\left( {3{y^8} - 4{y^6} + 5{y^4}} \right) \div {y^4} = \dfrac{{{y^4}\left( {3{y^4} - 4{y^2} + 5} \right)}}{{{y^4}}}\]

\[\left( {3{y^8} - 4{y^6} + 5{y^4}} \right) \div {y^4} = 3{y^4} - 4{y^2} + 5\]

The value of $\left( {3{y^8} - 4{y^6} + 5{y^4}} \right) \div {y^4}$ is \[3{y^4} - 4{y^2} + 5\].

iii. Find the division \[8\left( {{x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3}} \right) \div 4{x^2}{y^2}{z^2}\].

Ans: The expression \[8\left( {{x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3}} \right)\] can be written as \[8{x^2}{y^2}{z^2}\left( {x + y + z} \right)\].

Substitute \[8{x^2}{y^2}{z^2}\left( {x + y + z} \right)\] for \[8\left( {{x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3}} \right)\] in \[8\left( {{x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3}} \right) \div 4{x^2}{y^2}{z^2}\] and simplify using division.

\[8\left( {{x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3}} \right) \div 4{x^2}{y^2}{z^2} = \dfrac{{8{x^2}{y^2}{z^2}\left( {x + y + z} \right)}}{{4{x^2}{y^2}{z^2}}}\]

\[8\left( {{x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3}} \right) \div 4{x^2}{y^2}{z^2} = 2\left( {x + y + z} \right)\]

The value of \[8\left( {{x^3}{y^2}{z^2} + {x^2}{y^3}{z^2} + {x^2}{y^2}{z^3}} \right) \div 4{x^2}{y^2}{z^2}\]is \[2\left( {x + y + z} \right)\].

iv. Find the division \[\left( {{x^3} + 2{x^2} + 3x} \right) \div 2x\].

Ans: The expression \[\left( {{x^3} + 2{x^2} + 3x} \right)\] can be written as \[x\left( {{x^2} + 2x + 3} \right)\].

Substitute \[x\left( {{x^2} + 2x + 3} \right)\] for \[\left( {{x^3} + 2{x^2} + 3x} \right)\] in \[\left( {{x^3} + 2{x^2} + 3x} \right) \div 2x\] and simplify using division.

\[\left( {{x^3} + 2{x^2} + 3x} \right) \div 2x = \dfrac{{x\left( {{x^2} + 2x + 3} \right)}}{{2x}}\]

\[\left( {{x^3} + 2{x^2} + 3x} \right) \div 2x = \dfrac{1}{2}\left( {{x^2} + 2x + 3} \right)\]

The value of \[\left( {{x^3} + 2{x^2} + 3x} \right) \div 2x\]is \[\dfrac{1}{2}\left( {{x^2} + 2x + 3} \right)\].

v. Find the division \[\left( {{p^3}{q^6} - {p^6}{q^3}} \right) \div {p^3}{q^3}\].

Ans: The expression \[\left( {{p^3}{q^6} - {p^6}{q^3}} \right)\] can be written as \[{p^3}{q^3}\left( {{q^3} - {p^3}} \right)\].

Substitute \[{p^3}{q^3}\left( {{q^3} - {p^3}} \right)\] for \[\left( {{p^3}{q^6} - {p^6}{q^3}} \right)\] in \[\left( {{p^3}{q^6} - {p^6}{q^3}} \right) \div {p^3}{q^3}\] and simplify using division.

\[\left( {{p^3}{q^6} - {p^6}{q^3}} \right) \div {p^3}{q^3} = \dfrac{{{p^3}{q^3}\left( {{q^3} - {p^3}} \right)}}{{{p^3}{q^3}}}\]

\[\left( {{p^3}{q^6} - {p^6}{q^3}} \right) \div {p^3}{q^3} = {q^3} - {p^3}\]

The value of \[\left( {{p^3}{q^6} - {p^6}{q^3}} \right) \div {p^3}{q^3}\]is \[{q^3} - {p^3}\].

3. Work out the following divisions.

i. Find the division \[\left( {10x - 25} \right) \div 5\].

Ans: The expression \[\left( {10x - 25} \right)\] can be written as \[5\left( {2x - 5} \right)\].

Substitute \[5\left( {2x - 5} \right)\] for \[\left( {10x - 25} \right)\] in \[\left( {10x - 25} \right) \div 5\] and simplify using division.

\[\left( {10x - 25} \right) \div 5 = \dfrac{{5\left( {2x - 5} \right)}}{5}\]

\[\left( {10x - 25} \right) \div 5 = 2x - 5\]

The value of \[\left( {10x - 25} \right) \div 5\] is \[2x - 5\].

ii. Find the division \[\left( {10x - 25} \right) \div \left( {2x - 5} \right)\].

Ans: The expression \[\left( {10x - 25} \right)\] can be written as \[5\left( {2x - 5} \right)\].

Substitute \[5\left( {2x - 5} \right)\] for \[\left( {10x - 25} \right)\] in \[\left( {10x - 25} \right) \div \left( {2x - 5} \right)\] and simplify using division.

\[\left( {10x - 25} \right) \div \left( {2x - 5} \right) = \dfrac{{5\left( {2x - 5} \right)}}{{\left( {2x - 5} \right)}}\]

\[\left( {10x - 25} \right) \div \left( {2x - 5} \right) = 5\]

The value of \[\left( {10x - 25} \right) \div \left( {2x - 5} \right)\] is 5.

iii. Find the division \[10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)\].

Ans: The expression \[10y\left( {6y + 21} \right)\] can be written as \[2 \times 5 \times 3y\left( {2y + 7} \right)\].

Substitute \[2 \times 5 \times 3y\left( {2y + 7} \right)\] for \[10y\left( {6y + 21} \right)\] in \[10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)\] and simplify using division.

\[10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = \dfrac{{2 \times 5 \times 3y\left( {2y + 7} \right)}}{{5\left( {2y + 7} \right)}}\]

\[10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = 6y\]

The value of \[10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)\]is \[6y\].

iv. Find the division \[9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)\].

Ans: The expression \[9{x^2}{y^2}\left( {3z - 24} \right)\] can be written as \[9\left( 3 \right){x^2}{y^2}\left( {z - 8} \right)\].

Substitute \[9\left( 3 \right){x^2}{y^2}\left( {z - 8} \right)\] for \[9{x^2}{y^2}\left( {3z - 24} \right)\] in \[9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)\] and simplify using division.

\[9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = \dfrac{{9\left( 3 \right){x^2}{y^2}\left( {z - 8} \right)}}{{27xy\left( {z - 8} \right)}}\]

\[9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = xy\]

The value of \[9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)\]is \[xy\].

v. Find the division \[96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)\].

Ans: The expression \[96abc\left( {3a - 12} \right)\left( {5b - 30} \right)\] can be written as \[96 \times 3 \times 5abc\left( {a - 4} \right)\left( {b - 6} \right)\].

Substitute \[96 \times 3 \times 5abc\left( {a - 4} \right)\left( {b - 6} \right)\] for \[96abc\left( {3a - 12} \right)\left( {5b - 30} \right)\] in \[96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)\] and simplify using division.

\[96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = \dfrac{{96 \times 3 \times 5abc\left( {a - 4} \right)\left( {b - 6} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}}\]

\[96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = 10abc\]

The value of \[96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)\]is \[10abc\].

4. Divide as directed.

i. Find the division \[5\left( {2x + 1} \right)\left( {3x + 5} \right) \div \left( {2x + 1} \right)\].

Ans: To divide \[5\left( {2x + 1} \right)\left( {3x + 5} \right) \div \left( {2x + 1} \right)\], cut the like terms and the remaining will be the answer.

\[5\left( {2x + 1} \right)\left( {3x + 5} \right) \div \left( {2x + 1} \right) = \dfrac{{5\left( {2x + 1} \right)\left( {3x + 5} \right)}}{{\left( {2x + 1} \right)}}\]

\[5\left( {2x + 1} \right)\left( {3x + 5} \right) \div \left( {2x + 1} \right) = 5\left( {3x + 5} \right)\]

The value of \[5\left( {2x + 1} \right)\left( {3x + 5} \right) \div \left( {2x + 1} \right)\]is \[5\left( {3x + 5} \right)\].

ii. Find the division \[26xy\left( {x + 5} \right)\left( {y - 4} \right) \div 13x\left( {y - 4} \right)\].

Ans: To divide \[26xy\left( {x + 5} \right)\left( {y - 4} \right) \div 13x\left( {y - 4} \right)\], cut the like terms and the remaining will be the answer.

\[26xy\left( {x + 5} \right)\left( {y - 4} \right) \div 13x\left( {y - 4} \right) = \dfrac{{26xy\left( {x + 5} \right)\left( {y - 4} \right)}}{{13x\left( {y - 4} \right)}}\]

\[26xy\left( {x + 5} \right)\left( {y - 4} \right) \div 13x\left( {y - 4} \right) = \dfrac{{2\left( {13} \right)xy\left( {x + 5} \right)\left( {y - 4} \right)}}{{13x\left( {y - 4} \right)}}\]

\[26xy\left( {x + 5} \right)\left( {y - 4} \right) \div 13x\left( {y - 4} \right) = 2y\left( {x + 5} \right)\]

The value of \[26xy\left( {x + 5} \right)\left( {y - 4} \right) \div 13x\left( {y - 4} \right)\]is \[2y\left( {x + 5} \right)\].

iii. Find the division \[52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right) \div 104pq\left( {q + r} \right)\left( {r + p} \right)\].

Ans: To divide \[52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right) \div 104pq\left( {q + r} \right)\left( {r + p} \right)\], cut the like terms and the remaining will be the answer.

\[52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right) \div 104pq\left( {q + r} \right)\left( {r + p} \right) = \dfrac{{52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right)}}{{104pq\left( {q + r} \right)\left( {r + p} \right)}}\]

\[52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right) \div 104pq\left( {q + r} \right)\left( {r + p} \right) = \dfrac{{52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right)}}{{2\left( {52} \right)pq\left( {q + r} \right)\left( {r + p} \right)}}\]\[52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right) \div 104pq\left( {q + r} \right)\left( {r + p} \right) = \dfrac{1}{2}r\left( {p + q} \right)\]

The value of \[52pqr\left( {p + q} \right)\left( {q + r} \right)\left( {r + p} \right) \div 104pq\left( {q + r} \right)\left( {r + p} \right)\]is \[\dfrac{1}{2}r\left( {p + q} \right)\].

iv. Find the division \[20\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right) \div 5\left( {y + 4} \right)\].

Ans: To divide \[20\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right) \div 5\left( {y + 4} \right)\], cut the like terms and the remaining will be the answer.

\[20\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right) \div 5\left( {y + 4} \right) = \dfrac{{20\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right)}}{{5\left( {y + 4} \right)}}\]

\[20\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right) \div 5\left( {y + 4} \right) = \dfrac{{5 \times 4\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right)}}{{5\left( {y + 4} \right)}}\]

\[20\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right) \div 5\left( {y + 4} \right) = 4\left( {{y^2} + 5y + 3} \right)\]

The value of \[20\left( {y + 4} \right)\left( {{y^2} + 5y + 3} \right) \div 5\left( {y + 4} \right)\]is \[4\left( {{y^2} + 5y + 3} \right)\].

v. Find the division \[x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) \div x\left( {x + 1} \right)\].

Ans: To divide \[x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) \div x\left( {x + 1} \right)\], cut the like terms and the remaining will be the answer.

\[x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) \div x\left( {x + 1} \right) = \dfrac{{x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)}}{{x\left( {x + 1} \right)}}\]

\[x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) \div x\left( {x + 1} \right) = \left( {x + 2} \right)\left( {x + 3} \right)\]

The value of \[x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) \div x\left( {x + 1} \right)\]is \[\left( {x + 2} \right)\left( {x + 3} \right)\].

5. Factorise the expressions and divide them as directed.

i. Factorise the expression and divide$\left( {{y^2} + 7y + 10} \right) \div \left( {y + 5} \right)$.

Ans:  Factorise $\left( {{y^2} + 7y + 10} \right)$ by splitting the middle term.

${y^2} + 7y + 10 = {y^2} + 2y + 5y + 10$

${y^2} + 7y + 10 = y\left( {y + 2} \right) + 5\left( {y + 2} \right)$

${y^2} + 7y + 10 = \left( {y + 2} \right)\left( {y + 5} \right)$

Substitute $\left( {y + 2} \right)\left( {y + 5} \right)$ for $\left( {{y^2} + 7y + 10} \right)$ in $\left( {{y^2} + 7y + 10} \right) \div \left( {y + 5} \right)$ and simplify.

$\left( {{y^2} + 7y + 10} \right) \div \left( {y + 5} \right) = \dfrac{{\left( {y + 2} \right)\left( {y + 5} \right)}}{{\left( {y + 5} \right)}}$

$\left( {{y^2} + 7y + 10} \right) \div \left( {y + 5} \right) = y + 2$

The value of $\left( {{y^2} + 7y + 10} \right) \div \left( {y + 5} \right)$is $y + 2$.

ii. Factorise the expression and divide $\left( {{m^2} - 14m - 32} \right) \div \left( {m + 2} \right)$.

Ans:  Factorise ${m^2} - 14m - 32$ by splitting the middle term.

${m^2} - 14m - 32 = {m^2} + 2m - 16m - 32$

${m^2} - 14m - 32 = m\left( {m + 2} \right) - 16\left( {m + 2} \right)$

${m^2} - 14m - 32 = \left( {m + 2} \right)\left( {m - 16} \right)$

Substitute $\left( {m + 2} \right)\left( {m - 16} \right)$ for ${m^2} - 14m - 32$ in $\left( {{m^2} - 14m - 32} \right) \div \left( {m + 2} \right)$ and simplify.

$\left( {{m^2} - 14m - 32} \right) \div \left( {m + 2} \right) = \dfrac{{\left( {m + 2} \right)\left( {m - 16} \right)}}{{\left( {m + 2} \right)}}$

$\left( {{m^2} - 14m - 32} \right) \div \left( {m + 2} \right) = m - 16$

The value of $\left( {{m^2} - 14m - 32} \right) \div \left( {m + 2} \right)$ is $m - 16$.

iii. Factorise the expression and divide $\left( {5{p^2} - 25p + 20} \right) \div \left( {p - 1} \right)$.

Ans: The expression $5{p^2} - 25p + 20$ can be written as $5\left( {{p^2} - 5p + 4} \right)$.

Factorise $5\left( {{p^2} - 5p + 4} \right)$ by splitting the middle term.

$5\left( {{p^2} - 5p + 4} \right) = 5\left( {{p^2} - 1p - 4p + 4} \right)$

$5\left( {{p^2} - 5p + 4} \right) = 5\left( {p\left( {p - 1} \right) - 4\left( {p - 1} \right)} \right)$

$5\left( {{p^2} - 5p + 4} \right) = 5\left( {p - 1} \right)\left( {p - 4} \right)$

Substitute $5\left( {p - 1} \right)\left( {p - 4} \right)$ for $5{p^2} - 25p + 20$ in $\left( {5{p^2} - 25p + 20} \right) \div \left( {p - 1} \right)$ and simplify.

\[\left( {5{p^2} - 25p + 20} \right) \div \left( {p - 1} \right) = \dfrac{{5\left( {p - 1} \right)\left( {p - 4} \right)}}{{\left( {p - 1} \right)}}\]

$\left( {5{p^2} - 25p + 20} \right) \div \left( {p - 1} \right) = 5\left( {p - 4} \right)$

The value of $\left( {5{p^2} - 25p + 20} \right) \div \left( {p - 1} \right)$ is $5\left( {p - 4} \right)$.

iv. Factorise the expression and divide $4yz\left( {{z^2} + 6z - 16} \right) \div 2y\left( {z + 8} \right)$.

Ans:  Factorise $4yz\left( {{z^2} + 6z - 16} \right)$ by splitting the middle term.

$4yz\left( {{z^2} + 6z - 16} \right) = 4yz\left( {{z^2} - 2z + 8z - 16} \right)$

$4yz\left( {{z^2} + 6z - 16} \right) = 4yz\left( {z\left( {z - 2} \right) + 8\left( {z - 2} \right)} \right)$

$4yz\left( {{z^2} + 6z - 16} \right) = 4yz\left( {z - 2} \right)\left( {z + 8} \right)$

Substitute $4yz\left( {z - 2} \right)\left( {z + 8} \right)$ for $4yz\left( {{z^2} + 6z - 16} \right)$ in $4yz\left( {{z^2} + 6z - 16} \right) \div 2y\left( {z + 8} \right)$ and simplify.

$4yz\left( {{z^2} + 6z - 16} \right) \div 2y\left( {z + 8} \right) = \dfrac{{4yz\left( {z - 2} \right)\left( {z + 8} \right)}}{{2y\left( {z + 8} \right)}}$

$4yz\left( {{z^2} + 6z - 16} \right) \div 2y\left( {z + 8} \right) = 2z\left( {z - 2} \right)$

The value of $4yz\left( {{z^2} + 6z - 16} \right) \div 2y\left( {z + 8} \right)$ is $2z\left( {z - 2} \right)$.

v. Factorise the expression and divide $5pq\left( {{p^2} - {q^2}} \right) \div 2p\left( {p + q} \right)$.

Ans: Factorise $5pq\left( {{p^2} - {q^2}} \right)$ by using the formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$.

$5pq\left( {{p^2} - {q^2}} \right) = 5pq\left( {p - q} \right)\left( {p + q} \right)$

Substitute $5pq\left( {p - q} \right)\left( {p + q} \right)$ for $5pq\left( {{p^2} - {q^2}} \right)$ in $5pq\left( {{p^2} - {q^2}} \right) \div 2p\left( {p + q} \right)$ and simplify.

$5pq\left( {{p^2} - {q^2}} \right) \div 2p\left( {p + q} \right) = \dfrac{{5pq\left( {p - q} \right)\left( {p + q} \right)}}{{2p\left( {p + q} \right)}}$

$5pq\left( {{p^2} - {q^2}} \right) \div 2p\left( {p + q} \right) = \dfrac{5}{2}q\left( {p - q} \right)$

The value of $5pq\left( {{p^2} - {q^2}} \right) \div 2p\left( {p + q} \right)$ is $\dfrac{5}{2}q\left( {p - q} \right)$.

vi. Factorise the expression and divide $12xy\left( {9{x^2} - 16{y^2}} \right) \div 4xy\left( {3x + 4y} \right)$.

Ans: Factorise $12xy\left( {9{x^2} - 16{y^2}} \right)$ by using the formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$.

$12xy\left( {9{x^2} - 16{y^2}} \right) = 12xy\left( {3x - 4y} \right)\left( {3x + 4y} \right)$

Substitute $12xy\left( {3x - 4y} \right)\left( {3x + 4y} \right)$ for $12xy\left( {9{x^2} - 16{y^2}} \right)$ in $12xy\left( {9{x^2} - 16{y^2}} \right) \div 4xy\left( {3x + 4y} \right)$ and simplify.

$12xy\left( {9{x^2} - 16{y^2}} \right) \div 4xy\left( {3x + 4y} \right) = \dfrac{{12xy\left( {3x - 4y} \right)\left( {3x + 4y} \right)}}{{4xy\left( {3x + 4y} \right)}}$

$12xy\left( {9{x^2} - 16{y^2}} \right) \div 4xy\left( {3x + 4y} \right) = 3\left( {3x - 4y} \right)$

The value of $12xy\left( {9{x^2} - 16{y^2}} \right) \div 4xy\left( {3x + 4y} \right)$ is $3\left( {3x - 4y} \right)$.

vii. Factorise the expression and divide $39{y^3}\left( {50{y^2} - 98} \right) \div 26{y^2}\left( {5y + 7} \right)$.

Ans: The expression $39{y^3}\left( {50{y^2} - 98} \right)$ can be written as $39\left( 2 \right){y^3}\left( {{{\left( {5y} \right)}^2} - {{\left( 7 \right)}^2}} \right)$.

Factorise $39\left( 2 \right){y^3}\left( {{{\left( {5y} \right)}^2} - {{\left( 7 \right)}^2}} \right)$ by using the formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$.

\[39\left( 2 \right){y^3}\left( {{{\left( {5y} \right)}^2} - {{\left( 7 \right)}^2}} \right) = 39\left( 2 \right){y^3}\left( {5y - 7} \right)\left( {5y + 7} \right)\]

Substitute \[39\left( 2 \right){y^3}\left( {5y - 7} \right)\left( {5y + 7} \right)\] for $39{y^3}\left( {50{y^2} - 98} \right)$ in $39{y^3}\left( {50{y^2} - 98} \right) \div 26{y^2}\left( {5y + 7} \right)$ and simplify.

$39{y^3}\left( {50{y^2} - 98} \right) \div 26{y^2}\left( {5y + 7} \right) = \dfrac{{39\left( 2 \right){y^3}\left( {5y - 7} \right)\left( {5y + 7} \right)}}{{26{y^2}\left( {5y + 7} \right)}}$

$39{y^3}\left( {50{y^2} - 98} \right) \div 26{y^2}\left( {5y + 7} \right) = 3y\left( {5y - 7} \right)$

The value of $39{y^3}\left( {50{y^2} - 98} \right) \div 26{y^2}\left( {5y + 7} \right)$ is $3y\left( {5y - 7} \right)$.


NCERT Solutions for Class 8 Maths Chapter 12 Factorisation Exercise 12.3

Opting for the NCERT solutions for Ex 12.3 Class 8 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 12.3 Class 8 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.


Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 8 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 8 Maths Chapter 12 Exercise 12.3 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.


Besides these NCERT solutions for Class 8 Maths Chapter 12 Exercise 12.3, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.


Do not delay any more. Download the NCERT solutions for Class 8 Maths Chapter 12 Exercise 12.3 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.


Class 8 Maths Chapter 12: Exercises Breakdown

Exercise

Number of Questions

Exercise 12.1

3 Questions & solutions

Exercise 12.2

5 Questions & solutions


Other Study Material for CBSE Class 8 Maths Chapter 12


Chapter-wise NCERT Solutions for Class 8 Maths


Important Related Links for CBSE Class 8 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 8 Maths Chapter 12 Factorisation Ex 12.3

1. What is factorisation as taught in NCERT Solutions for Class 8 Maths Chapter 12?

Factorisation is the process of expressing an algebraic expression as a product of its factors, which may include numbers, variables, or other algebraic expressions. In Class 8 Maths Chapter 12, factorisation is emphasized to simplify expressions and solve equations as per CBSE 2025–26 syllabus.

2. How do stepwise solutions in NCERT Class 8 Maths Chapter 12 Exercise 12.3 help students understand factorisation?

Stepwise solutions in Class 8 Maths Chapter 12 Exercise 12.3 guide students through each mathematical operation, ensuring conceptual clarity.

  • They break down complex problems into manageable steps.
  • Highlight common mistakes, like incorrect division or factorization logic.
  • Follow the CBSE question-solving pattern, building exam readiness.

3. Why is it important to factorise polynomials before dividing in Class 8 Maths Chapter 12?

Factorising polynomials before division allows you to identify and cancel out common terms, reducing errors and simplifying calculations. This is especially vital in CBSE Class 8 exams, where neat, step-based solutions are rewarded.

4. Which types of questions are included in NCERT Solutions for Class 8 Maths Chapter 12 Exercise 12.3?

Exercise 12.3 includes problem types such as

  • Dividing polynomials by monomials and binomials,
  • Combining factorisation with division,
  • Application of algebraic identities (like a2 - b2),
  • Simplification using common factors,
  • Stepwise logical approach as per CBSE marking scheme.

5. What are some common mistakes students should avoid while solving factorisation problems in Class 8 Maths NCERT Solutions?

  • Not fully factorising the expression before division.
  • Missing common variables or numerical factors to cancel.
  • Errors in applying distributive or identity rules.
  • Incorrect simplification or cancellation of terms not in common factors.
Careful step-by-step verification helps avoid these mistakes.

6. How can understanding factorisation benefit students in higher classes and competitive exams?

Strong foundation in factorisation:

  • Prepares students for solving quadratic equations, algebraic identities, and polynomials in higher grades.
  • Supports efficient problem-solving in competitive exams like Olympiads and NTSE.
  • Develops logical reasoning and manipulation of algebraic forms as required by CBSE and beyond.

7. What CBSE methodologies are followed in the NCERT Solutions for Class 8 Maths Chapter 12?

NCERT Solutions adhere to official CBSE approaches by:

  • Providing stepwise logical reasoning,
  • Using prescribed algebraic identities,
  • Ensuring answers match marking guidelines,
  • Avoiding skipped logic, and
  • Demonstrating alternative methods where applicable.

8. What should students do if they get stuck on a step while solving Exercise 12.3?

  • Re-examine the factorisation step and check for missed factors.
  • Review the CBSE-recommended algebraic identities.
  • Cross-check calculations for arithmetic mistakes.
  • Refer to the annotated solutions provided in the NCERT textbook or use Vedantu’s structured explanations.

9. How do NCERT Solutions for Class 8 Maths Chapter 12 ensure compatibility with the latest CBSE syllabus (2025–26)?

Solutions are updated annually to match the official CBSE 2025–26 syllabus, include only current topics, and follow the latest pedagogical patterns specified in the curriculum, ensuring their relevance and accuracy for board exam preparation.

10. Can Class 8 Maths Chapter 12 factorisation questions appear in higher-order thinking sections of CBSE exams?

Yes, CBSE often uses factorisation-based problems to assess analytical and higher-order thinking skills (HOTs). Mastering these questions helps students tackle application and reasoning-based sections with confidence.

11. What is the difference between simply dividing and factorising before division in Class 8 Chapter 12 Maths?

Simply dividing may overlook hidden factors, while factorising before division reveals all possible cancellations.

  • This ensures full simplification and accuracy, matching CBSE’s expected solution structure.

12. How can NCERT Solutions for Class 8 Maths Chapter 12 Exercise 12.3 improve final exam performance?

  • They provide exposure to all CBSE exam patterns.
  • Offer detailed stepwise solutions for full marks.
  • Build problem-solving speed and precision required in board exams.

13. What are some key algebraic identities applied in Class 8 Maths Chapter 12 factorisation problems?

  • Difference of squares: (a2 - b2) = (a - b)(a + b)
  • Perfect-square trinomials: (a ± b)2
  • Factoring out the highest common factor (HCF)
Recognizing and applying these are essential for Class 8 factorisation mastery.

14. How should students organize their answers for factorisation problems to get full marks in CBSE Class 8 exams?

Answers should be structured as:

  • Clear factorisation step (show all working),
  • Write each cancelled/remaining term,
  • Final simplified answer highlighted,
  • Use proper algebraic notation as per NCERT standards.

15. What conceptual misconceptions about factorisation must Class 8 students avoid?

  • Mistaking addition for multiplication in terms.
  • Missing out on factoring all common elements.
  • Incorrectly simplifying non-common terms.
Regular practice with NCERT solutions minimizes these errors.