Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 7 Maths Chapter 13 Exponents And Powers in Hindi - 2025-26

ffImage
banner

NCERT Solutions For Class 7 Maths Chapter 13 Exponents And Powers in Hindi - 2025-26

In Ncert Solutions Class 7 Maths Chapter 13 In Hindi, you’ll learn all about exponents and powers in a way that’s simple and easy to understand. This chapter helps you make sense of huge numbers and tiny numbers using shortcuts—making maths less confusing and a lot more fun!


If you ever feel stuck with powers or get muddled while solving questions, Vedantu’s step-by-step NCERT Solutions (available as a free PDF download) can be your study buddy. You’ll find explanations in both Hindi and English, so you can pick the language you’re most comfortable with. Curious about the full syllabus? You can check the Class 7 Maths syllabus anytime for a clear overview.


Working through these solutions will help you get better at exponents, clear your doubts, and prepare with confidence for your exams. For help on other chapters too, visit the NCERT Solutions for Class 7 Maths page anytime.


NCERT Solution for Class 7 Maths Chapter 13- घातांक और घात

प्रश्नावली 13.1

1. निम्नलिखित के मान ज्ञात कीजिए:

  1. \[{{\mathbf{2}}^{\mathbf{6}}}\]

उत्तर: \[2^{6}2^{6}=2\times 2\times 2\times 2\times 2\times 2=64\]

  1. \[{{\mathbf{9}}^{\mathbf{3}}}\]

उत्तर: \[{{9}^{3}}=9\times 9\times 9=729\]

  1. \[\mathbf{1}{{\mathbf{1}}^{\mathbf{2}}}\]

उत्तर: \[{{11}^{2}}=11\times 11=121\]

  1. \[{{\mathbf{5}}^{\mathbf{4}}}\]

उत्तर: \[{{5}^{4}}=5\times 5\times 5\times 5=625\]


2. निम्नलिखित को घातांकीय रूप में व्यक्त कीजिए:

  1. \[\mathbf{6}\times \mathbf{6}\times \mathbf{6}\times \mathbf{6}\]

  2. \[\mathbf{t}\times \mathbf{t}\]

  3. \[\mathbf{b}\times \mathbf{b}\times \mathbf{b}\times \mathbf{b}\]

  4. \[\mathbf{5}\times \mathbf{5}\times \mathbf{7}\times \mathbf{7}\times \mathbf{7}\]

  5. \[\mathbf{2}\times \mathbf{2}\times \mathbf{a}\times \mathbf{a}\]

  6. \[\mathbf{a}\times \mathbf{a}\times \mathbf{a}\times \mathbf{c}\times \mathbf{c}\times \mathbf{c}\times \mathbf{c}\times \mathbf{d}\]

उत्तर: 

\[\begin{align} & \left( i \right)~{{6}^{4}} \\  & \left( ii \right)~{{t}^{2}} \\  & \left( iii \right)~{{b}^{4}} \\  & \left( iv \right)~{{5}^{2}}\times {{7}^{3}} \\  & \left( v \right)~{{2}^{2}}\times {{a}^{2}} \\  \end{align}\]


3. निम्नलिखित संख्याओं में से प्रत्येक को घातांकीय संकेतन में व्यक्त कीजिए:

  1. 512

उत्तर: \[512=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2={{2}^{9}}\]

  1. \[\mathbf{343}\]

उत्तर: \[343=7\times 7\times 7={{7}^{3}}\]

  1. \[\left( \mathbf{c} \right)\text{ }\mathbf{729}\]

उत्तर: \[729=3\times 3\times 3\times 3\times 3\times 3={{3}^{6}}\]

  1. \[\left( \mathbf{d} \right)\text{ }\mathbf{3125}\]

उत्तर: \[3125=5\times 5\times 5\times 5\times 5={{5}^{5}}\]


4. निम्नलिखित में से प्रत्येक भाग में, जहाँ भी सम्भव हो, बड़ी संख्या को पहचानिए:

  1. \[{{\mathbf{4}}^{\mathbf{3}}}~\]या \[{{\mathbf{3}}^{\mathbf{4}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{4}^{3}}=4\times 4\times 4=64  \\ {{3}^{4}}=3\times 3\times 3\times 3=81  \\ {{3}^{4}}>~{{4}^{3}}  \\ \end{array}\] 

  1. \[{{\mathbf{5}}^{\mathbf{3}}}~\]या \[{{\mathbf{3}}^{\mathbf{5}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{5}^{3}}=5\times 5\times 5=125  \\ {{3}^{5}}=3\times 3\times 3\times 3\times 3=243  \\ {{3}^{5}}>{{5}^{3}}  \\ \end{array}\] 

  1. \[{{\mathbf{2}}^{\mathbf{8}}}~\]या \[{{\mathbf{8}}^{\mathbf{2}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{2}^{8}}=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2=256  \\ {{8}^{2}}=8\times 8=64  \\ {{2}^{8}}>{{8}^{2}}  \\ \end{array}\] 

  1. $\mathbf{100^{2}}$ या $\mathbf{2^{100}}$

उत्तर: 

\[\begin{array}{*{35}{l}} {{100}^{2}}={{\left( 2\times 2\times 5\times 5 \right)}^{2}}  \\ =\left( {{2}^{2}}\times {{5}^{2}} \right)2  \\ ={{2}^{4}}\times {{5}^{4}}  \\ \end{array}\]

इस गुणनखंड में \[5\text{ }>\text{ }4\]और \[4={{2}^{2}}\]

यदि यहाँ पर \[5\] के स्थान पर \[8\] भी होता तो \[8={{2}^{3}}\]`

\[5\]के स्थान पर \[8\] होने की स्थिति में गुणनखंड इस प्रकार होता:

\[{{2}^{4}}\times {{2}^{3}}={{2}^{7}}~\] जो हर हाल में \[{{2}^{100}}\] से छोटा होता।

इसलिए, \[{{2}^{100}}>{{100}^{2}}\]

  1. \[{{\mathbf{2}}^{\mathbf{10}}}~\]या \[\mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{2}^{10}}={{4}^{5}}=4\times 4\times 4\times 4\times 4=1024  \\ {{10}^{2}}=100  \\ {{2}^{10}}>{{10}^{2}}  \\ \end{array}\]


5. निम्नलिखित में से प्रत्येक को उनके अभाज्य गुणनखंडों की घातो के गुणनफल के रूप में व्यक्त कीजिए।

  1. 648

उत्तर: 

\[\begin{array}{*{35}{l}} 648=2\times 2\times 2\times 3\times 3\times 3\times 3  \\ ={{2}^{3}}\times {{3}^{4}}  \\ \end{array}\] 

  1. \[\mathbf{405}\]

उत्तर:

 \[\begin{align} & 405 \\  & =5\times 3\times 3\times 3\times 3 \\  & =5\times {{3}^{4}} \\  \end{align}\]

  1. \[\mathbf{540}\]

उत्तर: 

\[\begin{align} & 540=2\times 2\times 3\times 3\times 3\times 5 \\  & ={{2}^{2}}\times {{3}^{3}}\times 5 \\  \end{align}\] 

  1. \[\mathbf{3600}\]

उत्तर: 

\[\begin{array}{*{35}{l}} 3600=36\times 100  \\ =4\times 9\times 4\times 25  \\ =4\times 4\times 9\times 5\times 5  \\ ={{2}^{4}}\times {{3}^{2}}\times {{5}^{2}}  \\ \end{array}\]


6.सरल कीजिए:

  1. \[\left( \mathbf{a} \right)\text{ }\mathbf{2}\text{ }\times \mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}\]

उत्तर: \[2\times {{10}^{3}}=2\times 1000=2000\]

  1. \[{{\mathbf{7}}^{\mathbf{2}}}~\times \text{ }{{\mathbf{2}}^{\mathbf{2}}}\]

उत्तर: \[{{7}^{2}}\times {{2}^{2}}=49\times 4=196\]

  1. \[{{\mathbf{2}}^{\mathbf{3}}}~\times \text{ }\mathbf{5}\]

उत्तर: \[{{2}^{3}}\times 5=8\times 5=40\]

  1. \[\mathbf{3}\text{ }\times \text{ }{{\mathbf{4}}^{\mathbf{4}}}\]

उत्तर: \[3\times {{4}^{4}}=3\times 256=768\]

  1. \[\mathbf{0}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}\]

उत्तर: \[0\times 102=0\]

  1. \[{{\mathbf{5}}^{\mathbf{2}}}~\times \text{ }{{\mathbf{3}}^{\mathbf{3}}}\]

उत्तर: \[{{5}^{2}}\times {{3}^{3}}=25\times 27=675\]

  1. \[{{\mathbf{2}}^{\mathbf{4}~}}\times \text{ }{{\mathbf{3}}^{\mathbf{2}}}\]

उत्तर: \[{{2}^{4}}\times {{3}^{2}}=16\times 9=144\]

  1. \[{{\mathbf{3}}^{\mathbf{2}}}~\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{4}}}\]

उत्तर:  \[{{3}^{2}}\times {{10}^{4}}=9\times 10000=90000\]


7. सरल कीजिए:

(a) \[{{\left( -\mathbf{4} \right)}^{\mathbf{3}}}\]

उत्तर: \[{{\left( -4 \right)}^{3}}=-64\]

\[\left( \mathbf{b} \right)\text{ }\left( -\mathbf{3} \right)\text{ }\times \text{ }{{\left( -\mathbf{2} \right)}^{\mathbf{3}}}\]

उत्तर: \[\left( -3 \right)\times {{\left( -2 \right)}^{3}}=\left( -3 \right)\times \left( -8 \right)=24\]

\[\left( \mathbf{c} \right)\text{ }{{\left( -\mathbf{3} \right)}^{\mathbf{2}}}~\times \text{ }{{\left( -\mathbf{5} \right)}^{\mathbf{2}}}\]

उत्तर: \[{{\left( -3 \right)}^{2}}\times {{\left( -5 \right)}^{2}}=9\times 25=225\]

\[\left( \mathbf{d} \right)\text{ }{{\left( -\mathbf{2} \right)}^{\mathbf{3}}}~\times \text{ }{{\left( -\mathbf{10} \right)}^{\mathbf{3}}}\]

उत्तर: \[{{\left( -2 \right)}^{3}}\times {{\left( -10 \right)}^{3}}=\left( -8 \right)\times \left( -1000 \right)=8000\]


8. निम्नलिखित संख्याओं की तुलना कीजिए:

\[\left( \mathbf{a} \right)\text{ }\mathbf{2}.\mathbf{7}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{12}}},\text{ }\mathbf{1}.\mathbf{5}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{8}}}\]

उत्तर:

 \[2.7 > 1.5\]

\[\begin{array}{*{35}{l}} {{10}^{12}}>{{10}^{8}}  \\ 2.7\times {{10}^{12}}>1.5\times {{10}^{8}}  \\ \end{array}\] 

\[\left( \mathbf{b} \right)\text{ }\mathbf{4}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{14}}},\text{ }\mathbf{3}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{17}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{10}^{14}}<{{10}^{17}}  \\ 4\times {{10}^{14}}<3\times {{10}^{17}}  \\ \end{array}\]


प्रश्नावली13.2

1. घातांकों के नियमों का प्रयोग करते हुए, सरल कीजिए और उत्तर को घातांकीय रूप में लिखिए:

  1. \[{{\mathbf{3}}^{\mathbf{2}}}\times {{\mathbf{3}}^{\mathbf{4}}}\times {{\mathbf{3}}^{\mathbf{8}}}\]

उत्तर:

\[\begin{array}{*{35}{l}} ~{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}  \\ {{3}^{2}}\times {{3}^{4}}\times {{3}^{8}}={{3}^{2+4+8}}  \\ ={{3}^{14}}  \\ \end{array}\] 

  1. \[{{\mathbf{6}}^{\mathbf{15}}}\div {{\mathbf{6}}^{\mathbf{10}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}  \\ {{6}^{15}}\div {{6}^{10}}={{6}^{15-10}}  \\ ={{6}^{5}}  \\ \end{array}\] 

  1. \[{{\mathbf{a}}^{\mathbf{3}}}\times {{\mathbf{a}}^{\mathbf{2}}}\]

उत्तर: 

\[{{a}^{3}}\times {{a}^{2}}={{a}^{3+2}}={{a}^{5}}\] 

  1. \[{{\mathbf{7}}^{\mathbf{x}}}\times {{\mathbf{7}}^{\mathbf{2}}}\]

उत्तर: 

\[{{7}^{x}}\times {{7}^{2}}={{7}^{x+2}}\] 

  1. \[{{\left( \mathbf{5^2} \right)}^{\mathbf{3}}}\div {{\mathbf{5}}^{\mathbf{3}}}\]

उत्तर:

\[\begin{array}{*{35}{l}} ~{{\left( {{5}^{2}} \right)}^{3}}\div {{5}^{3}}  \\ =\dfrac{{{5}^{2+3}}}{{{5}^{3}}}  \\ =\dfrac{{{5}^{5}}}{{{5}^{3}}}  \\ \begin{align} & ={{5}^{5-3}} \\  & ={{5}^{2}} \\  \end{align}  \\ \end{array}\] 

  1. \[{{\mathbf{2}}^{\mathbf{5}}}\times {{\mathbf{5}}^{\mathbf{5}}}\]

उत्तर: 

\[{{2}^{5}}\times {{5}^{5}}={{10}^{5}}\] 

  1. \[{{\mathbf{a}}^{\mathbf{4}}}\times {{\mathbf{b}}^{\mathbf{4}}}\]

उत्तर: 

\[{{a}^{4}}\times {{b}^{4}}={{\left( ab \right)}^{4}}\] 

  1. \[{{\left( {{\mathbf{3}}^{\mathbf{4}}} \right)}^{\mathbf{5}}}\]

उत्तर:

 \[{{\left( {{3}^{4}} \right)}^{5}}={{3}^{4\times 5}}={{3}^{20}}\]

  1. \[\left( {{\mathbf{2}}^{\mathbf{20}}}\div {{\mathbf{2}}^{\mathbf{15}}} \right)\times {{\mathbf{2}}^{\mathbf{3}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} \left( \dfrac{{{2}^{20}}}{{{2}^{15}}} \right)\times {{2}^{3}}  \\ =\left( {{2}^{20-15}} \right)\times {{2}^{3}}  \\ \begin{align} & ={{2}^{5}}\times {{2}^{3}} \\  & ={{2}^{5+3}} \\  & ={{2}^{8}} \\  \end{align}  \\ \end{array}\] 

  1. \[{{\mathbf{8}}^{\mathbf{t}}}\div {{\mathbf{8}}^{\mathbf{2}}}\]

उत्तर: 

\[\dfrac{{{8}^{t}}}{{{8}^{2}}}={{8}^{t-2}}\]

2. निम्नलिखित में से प्रत्येक को सरल करके घातांकीय रूप में व्यक्त कीजिए:

  1. \[\dfrac{{{\mathbf{2}}^{\mathbf{3}}}\times {{\mathbf{3}}^{\mathbf{4}}}\times \mathbf{4}}{\mathbf{3}\times \mathbf{32}}\]

उत्तर: 

$\dfrac{{{2}^{3}}\times {{3}^{4}}\times 4}{3\times 32} $

$ =\dfrac{{{2}^{3}}\times {{3}^{4}}\times {{2}^{2}}}{3\times {{2}^{5}}}  $

$ ={{2}^{3+2-5}}\times {{3}^{4-1}} $

$ ={{2}^{0}}\times {{3}^{3}} $

$ =1\times {{3}^{3}} $

$={{3}^{3}} $

  1. \[\left( {{\left( {{\mathbf{5}}^{\mathbf{2}}} \right)}^{\mathbf{3}}}\times {{\mathbf{5}}^{\mathbf{4}}} \right)\div {{\mathbf{5}}^{\mathbf{7}}}\]

उत्तर:

\[\dfrac{\left( {{\left( {{5}^{2}} \right)}^{3}}\times {{5}^{4}} \right)}{{{5}^{7}}}\]

$   =\dfrac{{{5}^{6}}\times {{5}^{4}}}{{{5}^{7}}}$

$5^{6+4-7}$

$ ={{5}^{3}} $

  1. \[\mathbf{2}{{\mathbf{5}}^{\mathbf{4}}}\div {{\mathbf{5}}^{\mathbf{3}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} \dfrac{{{25}^{4}}}{{{5}^{3}}}  \\ =\dfrac{{{\left( {{5}^{2}} \right)}^{4}}}{{{5}^{3}}}  \\ =\dfrac{{{5}^{8}}}{{{5}^{3}}}  \\ \begin{align} & ={{5}^{8-3}} \\  & ={{5}^{5}} \\  \end{align}  \\ \end{array}\] 

  1. \[\dfrac{\mathbf{3}\times {{\mathbf{7}}^{\mathbf{2}}}\times \mathbf{1}{{\mathbf{1}}^{\mathbf{8}}}}{\mathbf{21}\times \mathbf{1}{{\mathbf{1}}^{\mathbf{3}}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} \dfrac{3\times {{7}^{2}}\times {{11}^{8}}}{21\times {{11}^{3}}}  \\ =\dfrac{3\times {{7}^{2}}\times {{11}^{8}}}{3\times 7\times {{11}^{3}}}  \\ ={{3}^{1-1}}\times {{7}^{2-1}}\times {{11}^{8-3}}  \\ \begin{align} & ={{3}^{0}}\times {{7}^{1}}\times {{11}^{5}} \\  & =7\times {{11}^{5}} \\ \end{align}  \\ \end{array}\] 

  1. \[\dfrac{{{\mathbf{3}}^{\mathbf{7}}}}{{{\mathbf{3}}^{\mathbf{4}}}\times {{\mathbf{3}}^{\mathbf{3}}}}\]

उत्तर: 

\[\dfrac{{{3}^{7}}}{{{3}^{4}}\times {{3}^{3}}}\]

\[\begin{array}{*{35}{l}} =\dfrac{{{3}^{7}}}{{{3}^{4+3}}}=\dfrac{{{3}^{7}}}{{{3}^{7}}}  \\ ={{3}^{7-7}}={{3}^{0}}=1  \\ \end{array}\] 

  1. \[{{\mathbf{2}}^{\mathbf{0}}}+{{\mathbf{3}}^{\mathbf{0}}}+{{\mathbf{4}}^{\mathbf{0}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{2}^{0}}+{{3}^{0}}+{{4}^{0}}  \\ \begin{align} & =1+1+1 \\  & =3 \\  \end{align}  \\ \end{array}\] 

  1. \[{{\mathbf{2}}^{\mathbf{0}}}\times {{\mathbf{3}}^{\mathbf{0}}}\times {{\mathbf{4}}^{\mathbf{0}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{2}^{0}}\times {{3}^{0}}\times {{4}^{0}}  \\ \begin{align} & =1\times 1\times 1 \\  & =1 \\  \end{align}  \\ \end{array}\] 

  1. \[\left( {{\mathbf{3}}^{\mathbf{0}}}+{{\mathbf{2}}^{\mathbf{0}}} \right)\times {{\mathbf{5}}^{\mathbf{0}}}\]

उत्तर:

\[\begin{array}{*{35}{l}} ~\left( {{3}^{0}}+{{2}^{0}} \right)\times {{5}^{0}}  \\ \begin{align} & =\left( 1+1 \right)\times 1 \\  & =2\times 1 \\  & =2 \\ \end{align}  \\ \end{array}\] 

  1. \[\dfrac{{{\mathbf{2}}^{\mathbf{8}}}\times {{\mathbf{a}}^{\mathbf{5}}}}{{{\mathbf{4}}^{\mathbf{3}}}\times {{\mathbf{a}}^{\mathbf{3}}}}\]

उत्तर:

\[\begin{array}{*{35}{l}} ~\dfrac{{{2}^{8}}\times {{a}^{5}}}{{{4}^{3}}\times {{a}^{3}}}  \\ =\dfrac{{{2}^{8}}\times {{a}^{5}}^{-3}}{{{2}^{6}}}  \\ ={{2}^{8-6}}\times {{a}^{2}}={{2}^{2}}\times {{a}^{2}}={{\left( 2a \right)}^{2}}  \\ \end{array}\] 

  1. \[\dfrac{~{{\mathbf{a}}^{\mathbf{5}}}\times {{\mathbf{a}}^{\mathbf{3}}}}{{{\mathbf{a}}^{\mathbf{8}}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} \dfrac{{{a}^{5}}\times {{a}^{3}}}{{{a}^{8}}}  \\ \begin{align} & ={{a}^{5+3-8}} \\  & ={{a}^{0}} \\  & =1 \\  \end{align}  \\ \end{array}\] 

  1. \[\dfrac{{{\mathbf{4}}^{\mathbf{5}}}\times {{\mathbf{a}}^{\mathbf{8}}}{{\mathbf{b}}^{\mathbf{3}}}}{{{\mathbf{4}}^{\mathbf{5}}}\times {{\mathbf{a}}^{\mathbf{5}}}{{\mathbf{b}}^{\mathbf{2}}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} \dfrac{{{4}^{5}}\times {{a}^{8}}{{b}^{3}}}{{{4}^{5}}\times {{a}^{5}}{{b}^{2}}}  \\ =\dfrac{{{a}^{8}}{{b}^{3}}}{{{a}^{5}}{{b}^{2}}}  \\ \begin{align} & ={{a}^{8-5}}\times {{b}^{3-2}} \\  & ={{a}^{3}}\times b \\ \end{align}  \\ \end{array}\] 

  1. \[{{\left( {{\mathbf{2}}^{\mathbf{3}}}\times \mathbf{2} \right)}^{\mathbf{2}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} {{\left( {{2}^{3}}\times 2 \right)}^{2}}  \\ \begin{align} & ={{\left( {{2}^{3+1}} \right)}^{2}} \\  & ={{\left( {{2}^{4}} \right)}^{2}} \\  & ={{2}^{8}} \\  \end{align}  \\ \end{array}\]


3. बताइए कि निम्नलिखित कथन सत्य है या असत्य तथा अपने उत्तर का कारण भी दीजिए:

  1. \[\mathbf{10}\times\mathbf{1}{{\mathbf{0}}^{\mathbf{11}}}=\mathbf{10}{{\mathbf{0}}^{\mathbf{11}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} LHS\text{ }=~10\times {{10}^{11}}={{10}^{1+11}}={{10}^{12}}  \\ \begin{align} & RHS\text{ }=~{{100}^{11}}={{\left( {{10}^{2}} \right)}^{11}}={{10}^{22}} \\  & LHS\ne RHS \\ \end{align}  \\ {}  \\ \end{array}\] 

अतः कथन असत्य है।

  1. \[{{\mathbf{2}}^{\mathbf{3}}}>{{\mathbf{5}}^{\mathbf{2}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} LHS\text{ }=~{{2}^{3}}=8  \\ RHS\text{ }=~{{5}^{2}}=25  \\ LHS\ne RHS  \\ \end{array}\] 

अतः कथन असत्य है।

  1.  $\mathbf{2^3×3^2=6^5}$

उत्तर: 

\[\begin{array}{*{35}{l}} LHS\text{ }=~{{2}^{3}}\times {{3}^{2}}=8\times 9=72  \\ RHS\text{ }=~{{6}^{5}}=7776  \\ LHS\ne RHS  \\ \end{array}\] 

  1. \[{{\mathbf{3}}^{\mathbf{0}}}=\mathbf{100}{{\mathbf{0}}^{\mathbf{0}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} LHS\text{ }=~{{3}^{0}}=1  \\ RHS\text{ }=~{{1000}^{0}}=1  \\ LHS=RHS  \\ \end{array}\]

अतः कथन सत्य है।


4. निम्नलिखित में से प्रत्येक को केवल अभाज्य गुणनखंडों की घातों के गुणनफल के रूप में व्यक्त कीजिए:

  1. \[\mathbf{108}\text{ }\times \text{ }\mathbf{192}\]

उत्तर:

 \[\begin{array}{*{35}{l}} 108\times 192  \\ ={{2}^{2}}\times {{3}^{3}}\times 192  \\ =2^2\times 3^3\times 2^6\times 3=2^2\times 3^3\times 2^6\times 3  \\ ={{2}^{2+6}}\times {{3}^{3+1}}={{2}^{8}}\times {{3}^{4}}  \\ \end{array}\] 

  1. \[\mathbf{270}\]

उत्तर: ल0स0 लेने पर ,

\[270=2\times {{3}^{3}}\times 5\] 

  1. \[\text{ }\mathbf{729}\text{ }\times \text{ }\mathbf{64}\]

उत्तर: ल0स0 लेने पर

 \[\begin{array}{*{35}{l}} 729\times 64  \\ =9\times 9\times 9\times 8\times 8  \\ ={{3}^{2}}\times {{3}^{2}}\times {{3}^{2}}\times {{2}^{3}}\times {{2}^{3}}  \\ ={{3}^{2+2+2}}\times {2^{ 3+3}}  \\ =3^6\times 2^6=3^6\times 2^6  \\ \end{array}\] 

  1. \[\text{ }\mathbf{768}\]

उत्तर: ल0स0 लेने पर

\[~768={{2}^{8}}\times 3\]


5. सरल कीजिए:

  1. \[\dfrac{\left( {{\mathbf{2}}^{\mathbf{5}}} \right)\mathbf{2}\times {{\mathbf{7}}^{\mathbf{3}}}}{{{\mathbf{8}}^{\mathbf{3}}}\times \mathbf{7}}\]

उत्तर: \[\dfrac{{{\left( {{2}^{5}} \right)}^{2}}\times 7}{{{8}^{3}}\times 7^3}\]

\[\begin{array}{*{35}{l}} {}  \\ =\dfrac{{{2}^{10}}\times {{7}^{3}}}{{{2}^{9}}\times 7}  \\ \end{array}\] \[\begin{array}{*{35}{l}} \begin{align} & ={{2}^{10-9}}\times {{7}^{3-1}} \\  & ={{2}^{1}}\times {{7}^{2}} \\  \end{align}  \\ {}  \\ \end{array}\] 

  1. \[\dfrac{~\mathbf{25}\times {{\mathbf{5}}^{\mathbf{2}}}\times {{\mathbf{t}}^{\mathbf{8}}}}{\mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}\times {{\mathbf{t}}^{\mathbf{4}}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} \dfrac{25\times {{5}^{2}}\times {{t}^{8}}}{{{10}^{3}}\times {{t}^{4}}}  \\ =\dfrac{{{5}^{2}}\times {{5}^{2}}\times {{t}^{8}}}{{{2}^{3}}\times {{5}^{3}}\times {{t}^{4}}}  \\ =\left( {{5}^{4-3}} \right)\times \dfrac{{{t}^{8-4}}}{{{2}^{3}}}  \\ =\dfrac{5\times {{t}^{4}}}{{{2}^{3}}} \\ \end{array}\] 

  1. \[\dfrac{{{3}^{5}}\times {{10}^{5}}\times 25}{{{5}^{7}}\times {{6}^{5}}}\]

उत्तर: 

\[\begin{array}{*{35}{l}} \dfrac{{{3}^{5}}\times {{10}^{5}}\times 25}{{{5}^{7}}\times {{6}^{5}}}  \\ =\dfrac{{{3}^{5}}\times {{2}^{5}}\times {{5}^{5}}\times {{5}^{2}}}{{{5}^{7}}\times {{2}^{5}}\times {{3}^{5}}}  \\ ={{3}^{5-5}}\times {{2}^{5-5}}\times {{5}^{5+2-7}}  \\ \begin{align} & ={{3}^{0}}\times {{2}^{0}}\times {{5}^{0}} \\  & =1\times 1\times 1 \\  & =1 \\ \end{align}  \\ \end{array}\]


प्रश्नावली 13.3

1. निम्नलिखित संख्याओं को प्रसारित रूप में लिखिए:

  1. \[\text{ }\mathbf{279404}\]

उत्तर: \[2\text{ }\times \text{ }{{10}^{5}}~+\text{ }7\text{ }\times \text{ }{{10}^{4~}}+\text{ }9\text{ }\times \text{ }{{10}^{3}}~+\text{ }4\text{ }\times \text{ }{{10}^{2}}~+\text{ }4\text{ }\times \text{ }{{10}^{0}}\]

  1. \[\text{ }\mathbf{3006194}\]

उत्तर: \[3\text{ }\times \text{ }{{10}^{6~}}+\text{ }6\text{ }\times \text{ }{{10}^{3}}~+\text{ }1\text{ }\times \text{ }{{10}^{2}}~+\text{ }9\text{ }\times \text{ }{{10}^{1}}~+\text{ }4\text{ }\times \text{ }{{10}^{0}}\]

  1. \[\text{ }\mathbf{2806196}\]

उत्तर: \[2\text{ }\times \text{ }{{10}^{6}}~+\text{ }8\text{ }\times \text{ }{{10}^{5}}~+\text{ }6\text{ }\times \text{ }{{10}^{3}}~+\text{ }1\text{ }\times \text{ }{{10}^{2}}~+\text{ }9\text{ }\times \text{ }{{10}^{1}}~+\text{ }6\text{ }\times \text{ }{{10}^{0}}\]

  1. \[\text{ }\mathbf{120719}\]

उत्तर: \[1\text{ }\times \text{ }{{10}^{5~}}+\text{ }2\text{ }\times \text{ }{{10}^{4}}~+\text{ }7\text{ }\times \text{ }{{10}^{2~}}+\text{ }1\text{ }\times \text{ }{{10}^{1}}~+9\text{ }\times \text{ }{{10}^{0}}\]

  1. \[\text{ }\mathbf{20068}\]

उत्तर: \[2\text{ }\times \text{ }{{10}^{4}}~+\text{ }6\text{ }\times \text{ }{{10}^{1}}~+\text{ }8\text{ }\times \text{ }{{10}^{0}}\]


2. निम्नलिखित प्रसारित रूपों में से प्रत्येक के लिए संख्या ज्ञात कीजिए:

  1. \[\mathbf{8}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{4}}}+\mathbf{6}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}+\mathbf{0}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{4}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{1}}}+\mathbf{5}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{0}}}\]

  2. \[\mathbf{4}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{5}}}+\mathbf{5}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}+\mathbf{3}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{2}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{0}}}\]

  3. \[\mathbf{3}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{4}}}+\mathbf{7}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{5}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{0}}}\]

  4. \[\mathbf{9}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{5}}}+\mathbf{2}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{3}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{1}}}\]

उत्तर: \[\left( i \right)\text{ }86045,\text{ }\left( ii \right)\text{ }400532,\text{ }\left( iii \right)\text{ }30705,\text{ }\left( iv \right)\text{ }90023\]


3. निम्नलिखित संख्याओं को मानक रूप में व्यक्त कीजिए:

  1. \[\text{ }\mathbf{5},\mathbf{00},\mathbf{00},\mathbf{000}\]

उत्तर: \[~5\text{ }\times \text{ }{{10}^{7}}\]

  1. \[\text{ }\mathbf{70},\mathbf{00},\mathbf{000}\]

उत्तर: \[7\text{ }\times \text{ }{{10}^{6}}\]

  1. 3, 18, 65, 00, 00

उत्तर: \[3.1865\text{ }\times \text{ }{{10}^{9}}\]

  1. \[\text{ }\mathbf{3},\mathbf{90},\mathbf{878}\]

उत्तर: \[3.90878\text{ }\times \text{ }{{10}^{5}}\]

  1. \[\text{ }\mathbf{39087}.\mathbf{8}\]

उत्तर: \[3.90878\text{ }\times \text{ }{{10}^{4}}\]

  1. \[\text{ }\mathbf{3908}.\mathbf{78}\]

उत्तर: \[3.90878\text{ }\times \text{ }{{10}^{3}}\]


4. निम्नलिखित प्रश्नों में प्रकट होने वाली (आने वाली) संख्याओं को मानक रूप में व्यक्त कीजिए।

  1. पृथ्वी और चंद्रमा के बीच की दूरी \[\mathbf{384},\mathbf{000},\mathbf{000}\text{ }\mathbf{m}\] है।

उत्तर: \[3.84\text{ }\times \text{ }{{10}^{8}}~m\]

  1. निर्वात स्थान में प्रकाश की चाल (या वेग) \[\mathbf{300},\mathbf{000},\mathbf{000}\left( \text{ }\mathbf{m} \right)/\left( \mathbf{sec}. \right)\]है।

उत्तर: \[3\text{ }\times \text{ }{{10}^{8}}~m/sec\]

  1. पृथ्वी का व्यास \[\mathbf{12756000}\text{ }\mathbf{m}\] है।

उत्तर: \[1.2756\text{ }\times \text{ }{{10}^{7}}\]

  1. सूर्य का व्यास \[\mathbf{1},\mathbf{400},\mathbf{000},\mathbf{000}\text{ }\mathbf{m}\] है।

उत्तर: \[1.4\text{ }\times \text{ }{{10}^{9}}~m\]

  1. एक आकाश गंगा में औसतन \[\mathbf{100},\mathbf{000},\mathbf{000},\mathbf{000}\]तारे हैं।

उत्तर: \[1\text{ }\times \text{ }{{10}^{11}}\]

  1. विश्व मंडलमंडल (या सौर मंडल) \[\mathbf{12},\mathbf{000},\mathbf{000},\mathbf{000}\] वर्ष पुराना आकलित किया गया है।

उत्तर: \[1.2\text{ }\times \text{ }{{10}^{10}}~years\]

  1. आकाश गंगा के मध्य से सूर्य की दूरी \[\mathbf{300},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000}\text{ }\mathbf{m}\] आकलित की गई है।

उत्तर: \[3\text{ }\times \text{ }{{10}^{20}}~m\]

  1. \[\mathbf{1}.\mathbf{8}\text{ }\mathbf{g}\] भार वाली पानी की एक बूंद में \[\mathbf{60},\mathbf{230},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000}\]अणु (molecules) होते हैं।

उत्तर: \[6.023\text{ }\times \text{ }{{10}^{22~}}molecules\]

  1. पृथ्वी में \[1,353,000,000k{{m}^{3}}\]समुद्र जल है।

उत्तर: \[1.353\text{ }\times \text{ }{{10}^{9}}~k{{m}^{3}}\]

  1. मार्च 2001 में भारत की जनसंख्या \[\mathbf{1},\mathbf{027},\mathbf{000},\mathbf{000}\]थी।

उत्तर: \[1.027\text{ }\times \text{ }{{10}^{9}}\]


NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers In Hindi

Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 7 Maths Chapter 13 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 7 Maths Chapter 13 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.


NCERT Solutions for Class 7 Maths Chapter 13 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 7 Maths Exponents and Powers solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that. 


NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 7 Maths Exponents and Powers in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 7 can download these solutions at any time as per their convenience for self-study purpose. 


These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 7 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations. 

WhatsApp Banner

FAQs on NCERT Solutions For Class 7 Maths Chapter 13 Exponents And Powers in Hindi - 2025-26

1. How can I get the NCERT Solutions for Class 7 Maths Chapter 13 (2025-26 session)?

You can access the complete NCERT Solutions for Class 7 Maths Chapter 13, Exponents and Powers, on Vedantu's website. These solutions are prepared by subject matter experts and are fully aligned with the latest CBSE 2025-26 syllabus. They provide detailed, step-by-step answers to help you understand the correct problem-solving methods.

2. What key topics are covered in the NCERT Solutions for Class 7 Maths Chapter 13?

The NCERT Solutions for Chapter 13 provide detailed answers for all major topics, including:

  • Understanding exponents and bases.

  • Applying the laws of exponents for multiplication and division of powers with the same base.

  • Solving problems involving powers with the same exponents.

  • Simplifying expressions using the 'power of a power' rule.

  • Expressing large numbers in standard form (scientific notation).

3. Are the solutions for all exercises available in this chapter?

Yes, the NCERT Solutions for Class 7 Maths Chapter 13 are comprehensive and cover all the questions from every exercise in the textbook. This includes detailed, step-by-step solutions for Exercise 13.1, Exercise 13.2, and Exercise 13.3, ensuring no part of the chapter is left unprepared.

4. Why is it important to show every step when solving problems on exponents and powers?

Showing a step-by-step method is crucial as per the CBSE evaluation guidelines. It demonstrates your understanding of the specific law of exponents being used, rather than just arriving at the answer. This approach helps in securing full marks, allows teachers to award partial credit for the correct method even if the final calculation is wrong, and makes it easier for you to identify and correct mistakes.

5. How does mastering the solutions for Chapter 13 help in higher classes?

'Exponents and Powers' is a foundational chapter in mathematics. A strong grasp of these concepts is essential for advanced topics in algebra, polynomials, and scientific notation in Classes 8, 9, and 10. By thoroughly practising these NCERT solutions, you build a solid base that makes future mathematical concepts much easier to understand.

6. Do these NCERT Solutions also provide answers for the 'Try These' sections in Chapter 13?

Yes, our NCERT Solutions are designed to be exhaustive. Along with the main exercise questions, they also provide clear, solved answers for the in-text 'Try These' problems. This ensures a complete understanding of the concepts as you progress through the chapter.

7. I am looking for solutions to 'Visualising Solid Shapes'. Is this the same as Chapter 13?

No, there seems to be a confusion. As per the Class 7 Maths NCERT textbook, Chapter 13 is 'Exponents and Powers'. The chapter 'Visualising Solid Shapes' is a different chapter (Chapter 15). You can find separate, dedicated NCERT solutions for that chapter to study its specific concepts.