Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.8

ffImage

NCERT Solutions for Maths Class 12 Chapter 7 Integrals Exercise 7.8 - FREE PDF Download

Get Class 12 Maths NCERT Solutions for Chapter 7 - Integrals Exercise 7.8, which has detailed solutions to all problems from the textbook. This section focuses on complex integration problems that will help students to better understand integral calculus. Each solution is covered to make sure that integration methods are easily understood. 

toc-symbol
Table of Content
1. NCERT Solutions for Maths Class 12 Chapter 7 Integrals Exercise 7.8 - FREE PDF Download
2. Glance on NCERT Solutions for Maths Chapter 7 Exercise 7.8 Class 12 | Vedantu
3. Formulas Used in Class 12 Chapter 7 Exercise 7.8 
4. Access NCERT Solutions for Maths Class 12 Chapter 7 - Integrals
    4.1Exercise 7.8
5. Conclusion
6. Class 12 Maths Chapter 7: Exercises Breakdown
7. CBSE Class 12 Maths Chapter 7 Other Study Materials
8. NCERT Solutions for Class 12 Maths | Chapter-wise List
9. Related Links for NCERT Class 12 Maths in Hindi
10. Important Related Links for NCERT Class 12 Maths
FAQs


Exercise 7.8 Class 12 solutions can help you prepare for exams or improve your calculus skills. Understands integrals with simple explanations and practice exercises that follow NCERT requirements, providing important help for taking this important field of mathematics. Access the latest CBSE Class 12 Maths Syllabus here.


Glance on NCERT Solutions for Maths Chapter 7 Exercise 7.8 Class 12 | Vedantu

  • Exercise 7.8 Class 12 explains various types of integrals and their applications in real-world problems. 

  • It covers techniques such as substitution and integration by parts to solve complex integrals. 

  • Integrating a function's slope over an interval shows how much the function's value changes at the interval's ends.

  • Integrating a function's slope gives back the original function, in certain cases.

  • Finding the integral of a function means finding a special way to add up tiny parts of the function, often by checking its values at the start and end of an interval.

  • Adds up the space under a curve between it and the x-axis over a set interval, without needing exact numbers.

  • Finds the total area under a curve between it and the x-axis over a fixed interval, showing the total signed space between the curve and the x-axis in that range.

  • Exercise 7.8 Class 12 contains 22 questions with fully solved solutions, which provides practical insights into integrating functions and applying these concepts in mathematical and scientific contexts.


Formulas Used in Class 12 Chapter 7 Exercise 7.8 

  • Integration by Parts: $\int {u\,\,dv\,\, = \,\,uv- \,\int {v\,\,du} } $

  • Substitution Method: $\int f\left ( g\left ( x \right ) \right )\cdot {g}'\left ( x \right )dx=\int f\left ( u \right )du$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 7 - Integrals

Exercise 7.8

1.Integrate the given integral $\mathbf{\int\limits_{ - 1}^1 {(x + 1)dx} }$.

Ans: To simplify the question let us suppose, $I = \int\limits_{ - 1}^1 {(x + 1)dx} $

$\int {(x + 1)dx = \dfrac{{{x^2}}}{2}}  + x$

Again, let us suppose the function is $F(x) = \dfrac{{{x^2}}}{2} + x$

By second fundamental theorem of calculus, we obtain

$  I = F(1) - F( - 1) $

$= \left( {\dfrac{1}{2} + 1} \right) - \left( {\dfrac{1}{2} - 1} \right) $

$   = \dfrac{1}{2} + 1 - \dfrac{1}{2} + 1 $

$   = 2 $ 


2.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{1}{x}dx} }$

Ans: To simplify the question let us suppose, $I = \int\limits_2^3 {\dfrac{1}{x}dx} $

Thus, $\int {\dfrac{1}{x}dx = \log \left| x \right|} $

Again, let us suppose the function is$F(x) = \log \left| x \right|$

By second fundamental theorem of calculus, we obtain

$  I = F(3) - F(2) $

$ = \log \left| 3 \right| - \log \left| 2 \right| $

$   = \log \dfrac{3}{2} $ 


3.Integrate the given integral $\mathbf{\int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx} }$

Ans: To simplify the question let us suppose,

$I = \int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx}  $

$\int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx}  = 4\left( {\dfrac{{{x^4}}}{4}} \right) - 5\left( {\dfrac{{{x^3}}}{3}} \right) + 6\left( {\dfrac{{{x^2}}}{2}} \right) + 9(x) $ 

Again, let us suppose the function is 

$ \Rightarrow {x^4} - \dfrac{{5{x^3}}}{3} + 3{x^2} + 9x = F(x)$

By second fundamental theorem of calculus, we obtain

$I = F(2) - F(1)$

$ I = \left\{ {{2^4} - \dfrac{{5{{(2)}^3}}}{3} + 3{{(2)}^2} + 9(2)} \right\} - \left\{ {{{(1)}^4} - \dfrac{{5{{(1)}^3}}}{3} + 3{{(1)}^2} + 9(1)} \right\} $

$ = \left( {16 - \dfrac{{40}}{3} + 12 + 18} \right) - \left( {1 - \dfrac{5}{3} + 3 + 9} \right) $

$ = 16 - \dfrac{{40}}{3} + 12 + 18 - 1 + \dfrac{5}{3} - 3 - 9 $

$  = 33 - \dfrac{{35}}{3} $

$ = \dfrac{{99 - 35}}{3} $

$ = \dfrac{{64}}{3} $

 

4.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\left( {\sin 2xdx} \right)}} $

Ans: To simplify the question let us suppose,

$I = \int\limits_0^{\dfrac{\pi }{4}} {\left( {\sin 2xdx} \right)}  $

  $\int {\sin 2xdx = \left( {\dfrac{{ - \cos 2x}}{2}} \right)}  $ 

Again, let us suppose the function is$\left( {\dfrac{{ - \cos 2x}}{2}} \right) = F(x)$

By second fundamental theorem of calculus, we obtain

$  I = F\left( {\dfrac{\pi }{4}} \right) - F(0) $

$  =  - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $

$  =  - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $

$   =  - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $

$  =  - \dfrac{1}{2}\left[ {0 - 1} \right] $

$   = \dfrac{1}{2} $ 


5.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos 2xdx} \right)} }$

Ans: To simplify the question let us suppose,

$  I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos 2xdx} \right)}  $

$  \int {\cos 2xdx = \left( {\dfrac{{\sin 2x}}{2}} \right)}  $ 

Again, let us suppose the function is$\left( {\dfrac{{\sin 2x}}{2}} \right) = F(x)$

By second fundamental theorem of calculus, we obtain

$  I = F\left( {\dfrac{\pi }{2}} \right) - F(0) $

$   = \dfrac{1}{2}\left[ {\sin 2\left( {\dfrac{\pi }{2}} \right) - \sin 0} \right] $

$   = \dfrac{1}{2}\left[ {\sin \pi  - \sin 0} \right] $

$   = \dfrac{1}{2}\left[ {0 - 0} \right] $

$   = 0 $

 

6.Integrate the given integral $\mathbf{\int\limits_4^5 {{e^x}dx} }$

Ans: To simplify the question let us suppose,

$  I = \int\limits_4^5 {{e^x}dx}  $

$  \int\limits_4^5 {{e^x}dx}  = {e^x} = F(x) $ 

By second fundamental theorem of calculus, we obtain

$I = F(5) - F(4) $

$ = {e^5} - {e^4} $

 $  = {e^4}\left( {e - 1} \right) $ 


7.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\tan xdx} }$

Ans: To simplify the question let us suppose,

$I = \int\limits_0^{\dfrac{\pi }{4}} {\tan xdx}  $

 $ \int {\tan xdx =  - \log \left| {\cos x} \right|}  $ 

Again, let us suppose the function is$ - \log \left| {\cos x} \right| = F(x)$

By second fundamental theorem of calculus, we obtain

$ I = F\left( {\dfrac{\pi }{4}} \right) - F(0) $

$  =  - \log \left| {\cos \dfrac{\pi }{4}} \right| + \log \left| {\cos 0} \right| $

$   =  - \log \left| {\dfrac{1}{{\sqrt 2 }}} \right| + \log \left| 1 \right| $

$   =  - \log {\left( 2 \right)^{ - \dfrac{1}{2}}} $

$   = \dfrac{1}{2}\log 2 $ 


8.Integrate the given integral $\mathbf{\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\cos ecxdx} }$

Ans: To simplify the question let us suppose,

$ I = \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\cos ecxdx}  $

$  \int {\cos ecxdx = \log \left| {\cos ecx\dfrac{\pi }{6} - \cot \dfrac{\pi }{6}} \right|}  $ 

Again, let us suppose the function is$F(x) = \log \left| {\cos x} \right|$

By second fundamental theorem of calculus, we obtain

$I = F\left( {\dfrac{\pi }{4}} \right) - F\left( {\dfrac{\pi }{6}} \right) $

$   = \log \left| {\cos ec\dfrac{\pi }{4} - \cot \dfrac{\pi }{4}} \right| - \log \left| {\cos ec\dfrac{\pi }{6} - \cot \dfrac{\pi }{6}} \right| $

$   = \log \left| {\sqrt 2  - 1} \right| - \log \left| {2 - \sqrt 3 } \right| $

$   = \log \left( {\dfrac{{\sqrt 2  - 1}}{{2 - \sqrt 3 }}} \right) $ 


9.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }}} }$

Ans: To simplify the question let us suppose,

$I = \int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }}} $

Again, let us suppose the function is

$ I = \int {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }} = F(x)}  $

$ {\sin ^{ - 1}}x = F(x) $ 

By second fundamental theorem of calculus, we obtain

$ I = F(1) - F(0) $

$  = {\sin ^{ - 1}}(1) - {\sin ^{ - 1}}(0) $

$ = \dfrac{\pi }{2} - 0 $

$   = \dfrac{\pi }{2} $ 


10.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 + {x^2}} }}}} $

Ans: To simplify the question let us suppose,

$  I = \int\limits_0^1 {\dfrac{{dx}}{{1 + {x^2}}}}  $

$  \int {\dfrac{{dx}}{{1 + {x^2}}} = {{\tan }^{ - 1}}}  $ 

Again, let us suppose the function is

${\tan ^{ - 1}}x = F(x)$

By second fundamental theorem of calculus, we obtain

$I = F(1) - F(0) $

$= {\tan ^{ - 1}}(1) - {\tan ^{ - 1}}(0) $

$ = \dfrac{\pi }{4} $ 


11.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{{dx}}{{{x^2} - 1}}} }$

Ans: To simplify the question let us suppose,

$  I = \int\limits_2^3 {\dfrac{{dx}}{{{x^2} - 1}}}  $

$ \int {\dfrac{{dx}}{{{x^2} - 1}} = \dfrac{1}{2}\log \left| {\dfrac{{x - 1}}{{x + 1}}} \right|}  $ 

Again, let us suppose the function is

$\dfrac{1}{2}\log \left| {\dfrac{{x - 1}}{{x + 1}}} \right| = F(x)$

By second fundamental theorem of calculus, we obtain

$  I = F(3) - F(2) $

$   = \dfrac{1}{2}\left[ {\log \left| {\dfrac{{3 - 1}}{{3 + 1}}} \right| - \log \left| {\dfrac{{2 - 1}}{{2 + 1}}} \right|} \right] $

$   = \dfrac{1}{2}\left[ {\log \left| {\dfrac{2}{4}} \right| - \log \left| {\dfrac{1}{3}} \right|} \right] $

$   = \dfrac{1}{2}\left[ {\log \dfrac{1}{2} - \log \dfrac{1}{3}} \right] $

$  = \dfrac{1}{2}\left[ {\log \dfrac{3}{2}} \right] $ 


12.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx} }$

Ans: To simplify the question let us suppose,

$\int {{{\cos }^2}xdx = \int {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)dx} }  $

$ \dfrac{x}{2} + \dfrac{{\sin 2x}}{4} = \dfrac{1}{2}\left( {x + \dfrac{{\sin 2x}}{2}} \right) $ 

Again, let us suppose the function is

$\dfrac{1}{2}\left( {x + \dfrac{{\sin 2x}}{2}} \right) = F(x)$

By second fundamental theorem of calculus, we obtain

$  I = F\left( {\dfrac{\pi }{2}} \right) - F(0) $

$ = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{2} + \dfrac{{\sin \pi }}{2}} \right) - \left( {0 + \dfrac{{\sin 0}}{2}} \right)} \right] $

$   = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} + 0 - 0 + 0} \right] $

$   = \dfrac{\pi }{4} $ 


13.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{{xdx}}{{{x^2} + 1}}}} $

Ans: To simplify the question let us suppose,

$ I = \int\limits_2^3 {\dfrac{{xdx}}{{{x^2} + 1}}}  $

$  \int {\dfrac{{xdx}}{{{x^2} + 1}}}  $

$   = \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}dx}  $

$   = \dfrac{1}{2}\log \left( {1 + {x^2}} \right) $ 

Again, let us suppose the function is

$\dfrac{1}{2}\log \left( {1 + {x^2}} \right) = F(x)$

By second fundamental theorem of calculus, we obtain

$  I = F(3) - F(2) $

$ = \dfrac{1}{2}\left[ {\log \left( {1 + {{\left( 3 \right)}^2}} \right) - \log \left( {1 + {{(2)}^2}} \right)} \right] $

$   = \dfrac{1}{2}\left[ {\log 10 - \log 5} \right] $

$ = \dfrac{1}{2}\left[ {\log \dfrac{{10}}{5}} \right] $

$= \dfrac{1}{2}\left[ {\log 2} \right] $ 


14.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx} }$

Ans: To simplify the question let us suppose,

$  I = \int\limits_0^1 {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx}  $

$  \int {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx}  $

$ = \dfrac{1}{5}\int {\dfrac{{5\left( {2x + 3} \right)}}{{5{x^2} + 1}}dx}  $

$   = \dfrac{1}{5}\int {\dfrac{{\left( {10x + 15} \right)}}{{5{x^2} + 1}}dx}  $

$  = \dfrac{1}{5}\int {\dfrac{{10x}}{{5{x^2} + 1}}dx}  + 3\int {\dfrac{1}{{5{x^2} + 1}}dx}  $

$= \dfrac{1}{5}\int {\dfrac{{10x}}{{5{x^2} + 1}}dx}  + 3\int {\dfrac{1}{{5\left( {{x^2} + \dfrac{1}{5}} \right)}}dx}  $

$   = \dfrac{1}{5}\log \left( {5{x^2} + 1} \right) + \dfrac{3}{5}\dfrac{1}{{\dfrac{1}{{\sqrt 5 }}}}{\tan ^{ - 1}}\dfrac{x}{{\dfrac{1}{{\sqrt 5 }}}} $

$   = \dfrac{1}{5}\log \left( {5{x^2} + 1} \right) + \dfrac{3}{{\sqrt 5 }}{\tan ^{ - 1}}\left( {\sqrt 5 } \right)x $

$ = F(x) $ 

By second fundamental theorem of calculus, we obtain

$  I = F(3) - F(2) $

$   = \dfrac{1}{5}\left[ {\log \left( {1 + 5} \right) - \dfrac{3}{{\sqrt 5 }}\log \left( {\sqrt 5 } \right)} \right] - \left[ {\dfrac{1}{5}\log (1) + \dfrac{3}{{\sqrt 5 }}{{\tan }^{ - 1}}(0)} \right] $

$   = \dfrac{1}{5}\left[ {\log 6} \right] + \dfrac{3}{{\sqrt 5 }}{\tan ^{ - 1}}\sqrt 5 $ 


15.Integrate the given integral $\mathbf{\int\limits_0^1 {x{e^{{x^2}}}dx} }$

Ans: To simplify the question let us suppose,

$= \int\limits_0^1 {x{e^{{x^2}}}dx}$

$  {x^2} = t $

$ \Rightarrow 2xdx = dt $ 

As $x \to 0,t \to 0$ ,

Again $x \to 1,t \to 1,$, 

$\therefore I = \dfrac{1}{2}\int\limits_0^1 {{e^t}dt}  $

$  \dfrac{1}{2}\int\limits_0^1 {{e^t}dt}  = \dfrac{1}{2}{e^t}dt $

$  \dfrac{1}{2}{e^t}dt = F(t) $ 

By second fundamental theorem of calculus, we obtain

$  I = F(1) - F(0) $

$   = \dfrac{1}{2}e - \dfrac{1}{2}{e^0} $

$   = \dfrac{1}{2}\left( {e - 1} \right) $ 


16.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{5{x^2}}}{{{x^2} + 4x + 3}}dx}} $

Ans: To simplify the question let us suppose,

$I = \int\limits_0^1 {\dfrac{{5{x^2}}}{{{x^2} + 4x + 3}}dx} $

Dividing $5{x^2}$by ${x^2} + 4x + 3$, we obtain

$ I = \int\limits_1^2 {\left\{ {5 - \dfrac{{20x + 15}}{{{x^2} + 4x + 3}}} \right\}} dx $

$ = \int\limits_1^2 {5dx - \int\limits_1^2 {\dfrac{{20x + 15}}{{{x^2} + 4x + 3}}} } dx $

$ = \left[ {5x} \right]_1^2 - \int\limits_1^2 {\dfrac{{20x + 15}}{{{x^2} + 4x + 3}}dx}  $

$  I = 5 - {I_1} $ 

 Consider,

Let,

$20x + 15 = A\dfrac{d}{{dx}}\left( {{x^2} + 4x + 3} \right) + B $

$= 2Ax + (4A + B) $ 

Equating the coefficients of $x$ and constant term, we obtain

$A = 10$ and $B =  - 25$

Let,${x^2} + 4x + 3 = t $

$  \Rightarrow \left( {2x + 4} \right)dx = dt $

$   \Rightarrow {I_1} = 10\int {\dfrac{{dt}}{t} - 25\int {\dfrac{{dx}}{{{{\left( {x + 2} \right)}^2} - {1^2}}}} }  $

$  = 10\log t - 25\left[ {\dfrac{1}{2}\log \left( {\dfrac{{x + 1}}{{x + 3}}} \right)} \right]_1^2 $

$  = \left[ {10\log 15 - 10\log 18} \right] - 25\left[ {\dfrac{1}{2}\log \dfrac{3}{5} - \dfrac{1}{2}\log \dfrac{2}{4}} \right] $

$  = \left[ {10\log 5 + 10\log 3 - 10\log 4 - 10\log 2} \right] - \dfrac{{25}}{2}\left[ {\log 3 - \log 5 - \log 2 + \log 4} \right] $

$  = \left[ {10 + \dfrac{{25}}{2}} \right]\log 5 + \left[ { - 10 - \dfrac{{25}}{2}} \right]\log 4 + \left[ {10 + \dfrac{{25}}{2}} \right]\log 3 + \left[ { - 10 + \dfrac{{25}}{2}} \right]\log 2 $

$   = \dfrac{{45}}{2}\log 5 - \dfrac{{45}}{2}\log 4 - \dfrac{5}{2}\log 3 + \dfrac{5}{2}\log 2 $

$   = \dfrac{{45}}{2}\log \dfrac{5}{4} - \dfrac{5}{2}\log \dfrac{3}{2} $ 

Substituting the value of ${I_1}$in (1), we obtain

$ I = 5 - \left[ {\dfrac{{45}}{2}\log \dfrac{5}{2} - \dfrac{5}{2}\log \dfrac{3}{2}} \right] $

$ = 5 - \dfrac{5}{2}\left[ {9\log \dfrac{5}{2} - \log \dfrac{3}{2}} \right] $ 


17.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx} }$

Ans: To simplify the question let us suppose,

$ I = \int\limits_0^{\dfrac{\pi }{4}} {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx}  $

 $ \int {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx = 2\tan x + \dfrac{{{x^4}}}{4} + 2x}  $

$  2\tan x + \dfrac{{{x^4}}}{4} + 2x = F(x) $ 

By second fundamental theorem of calculus, we obtain

$  I = F\left( {\dfrac{\pi }{4}} \right) + F\left( 0 \right) $

$   = \left\{ {\left( {2\tan \dfrac{\pi }{4} + \dfrac{1}{4}{{\left( {\dfrac{\pi }{4}} \right)}^2} + 2\left( {\dfrac{\pi }{4}} \right)} \right) - \left( {2\tan 0 + 0 + 0} \right)} \right\} $

  $ = 2\tan \dfrac{\pi }{4} + {\dfrac{\pi }{{{4^5}}}^4} + \dfrac{\pi }{2} $

   $= 2 + \dfrac{\pi }{2} + \dfrac{{{\pi ^4}}}{{1024}} $ 


18.Integrate the given integral $\mathbf{\int\limits_0^\pi  {\left( {{{\sin }^2}\dfrac{x}{2} - {{\cos }^2}\dfrac{x}{2}} \right)dx} }$

Ans: To simplify the question let us suppose,

$ I = \int\limits_0^\pi  {\left( {{{\sin }^2}\dfrac{x}{2} - {{\cos }^2}\dfrac{x}{2}} \right)dx}  $

 $  =  - \int\limits_0^\pi  {\left( {{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}} \right)dx}  $

   $=  - \int\limits_0^\pi  {\cos xdx}  $

   $=  - \int\limits_0^\pi  {\cos xdx}  =  - \sin x $ 

By second fundamental theorem of calculus, we obtain

$  I = F\left( {\dfrac{\pi }{4}} \right) + F\left( 0 \right) $

  $ =  - \sin \pi  + \sin 0 $

$   = 0 $ 


19.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{6x + 3}}{{{x^2} + 4}}dx} }$

Ans: To simplify the question let us suppose,

$ I = \int\limits_0^2 {\dfrac{{6x + 3}}{{{x^2} + 4}}dx}  $

$  \int {\dfrac{{6x + 3}}{{{x^2} + 4}}dx}  $

$   = 3\int {\dfrac{{2x + 1}}{{{x^2} + 4}}dx}  $

$   = 3\int {\dfrac{{2x + 1}}{{{x^2} + 4}}dx}  $

$   = 3\int {\dfrac{{2x}}{{{x^2} + 4}}dx}  + 3\int {\dfrac{1}{{{x^2} + 4}}dx}  $

$   = 3\log ({x^2} + 4) + \dfrac{3}{2}{\tan ^{ - 1}}\dfrac{x}{2} $

$ = F(x) $ 

By second fundamental theorem of calculus, we obtain

$ I = F(3) - F(2) $

$= 3\left[ {\log \left( {{2^2} + 4} \right) - \dfrac{3}{2}{{\tan }^{ - 1}}\left( {\dfrac{2}{2}} \right)} \right] - \left[ {3\log (0 + 4) + \dfrac{3}{2}{{\tan }^{ - 1}}(\dfrac{0}{2})} \right] $

$  = 3\left[ {\log 8} \right] + \dfrac{3}{2}{\tan ^{ - 1}}1 - 3\log 4 - \dfrac{3}{2}{\tan ^{ - 1}}0 $

$  = 3\log 8 + \dfrac{3}{2}{\tan ^{ - 1}}1 - 3\log 4 - \dfrac{3}{2}{\tan ^{ - 1}}0 $

$= 3\log 8 + \dfrac{3}{2}\left( {\dfrac{\pi }{4}} \right) - 3\log 4 - 0 $

$= 3\log \left( {\dfrac{8}{4}} \right) + \dfrac{{3\pi }}{8} $

$= 3\log 2 + \dfrac{{3\pi }}{8} $ 


20.Integrate the given integral $\int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx} $

Ans: To simplify the question let us suppose,

$I = \int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx}  $

$  \int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx}  = x\int {{e^x}dx - \int {\left\{ {\left( {\dfrac{d}{{dx}}x} \right)\int {{e^x}dx} } \right\}dx + \left\{ {\dfrac{{ - \cos \dfrac{{\pi x}}{4}}}{{\dfrac{\pi }{4}}}} \right\}} }  $

$ = x{e^x} - x\int {{e^x}dx - \dfrac{4}{\pi }\cos \pi \dfrac{x}{4}}  $

$   = F(x) $ 

By second fundamental theorem of calculus, we obtain

 $ I = F(1) - F(0) $

 $= \left( {{e^1} - {e^1} - \dfrac{4}{\pi }\cos \pi \dfrac{1}{4}} \right) - \left( {0.{e^0} - {e^0} - \dfrac{4}{\pi }\cos 0} \right) $

 $  = e - e - \dfrac{4}{\pi }\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 1 + \dfrac{4}{\pi } $

$= 1 + \dfrac{4}{\pi } - \dfrac{{2\sqrt 2 }}{\pi } $ 


21.Integrate the given integral $\int\limits_1^{\sqrt 3 } {\dfrac{{dx}}{{1 + {x^2}}}} $

  1. \[\dfrac{\pi }{3}\]

  2. $\dfrac{{2\pi }}{3}$

  3. $\dfrac{\pi }{6}$

  4. $\dfrac{\pi }{{12}}$

Ans: To simplify the question let us suppose,

$  \int {\dfrac{{dx}}{{1 + {x^2}}}}  = {\tan ^{ - 1}}x $

By second fundamental theorem of calculus, we obtain

$ \int\limits_1^{\sqrt 3 } {\dfrac{{dx}}{{1 + {x^2}}}}  = F(\sqrt 3 ) - F(1) $

$  = {\tan ^{ - 1}}\sqrt 3  - {\tan ^{^{ - 1}}}1 $

$= \dfrac{\pi }{3} - \dfrac{\pi }{4} $

$   = \dfrac{\pi }{{12}} $ 

Hence, the correct Answer is $\dfrac{\pi }{{12}}$


22.Integrate the given integral$\int {\dfrac{{dx}}{{4 + 9{x^2}}}}  = \int {\dfrac{{dx}}{{{{(2)}^2} + {{(3x)}^2}}}}$ 

  1. $\dfrac{\pi }{6} $

  2. $\dfrac{\pi }{{12}} $

  3. $\dfrac{\pi }{{24}} $

  4. $\dfrac{\pi }{4} $ 

equals

Ans: To simplify the question let us suppose,

 3x = t

$\Rightarrow 3dx = dt$ 

$\int {\dfrac{{dx}}{{{{(2)}^2} + {{(3x)}^2}}}}  = \dfrac{1}{3}\int {\dfrac{{dt}}{{{{(2)}^2} + {{(t)}^2}}}}  $

$ = \dfrac{1}{3}\left[ {\dfrac{1}{2}{{\tan }^{ - 1}}\dfrac{t}{2}} \right] $

$ = \dfrac{1}{6}{\tan ^{ - 1}}\left( {\dfrac{{3x}}{2}} \right) $

$= F(x) $ 

By second fundamental theorem of calculus,

$\int\limits_0^{\dfrac{2}{3}} {\dfrac{{dx}}{{4 + 9{x^2}}}}  = F\left( {\dfrac{2}{3}} \right) - F(0) $

$= \dfrac{1}{6}{\tan ^{ - 1}}\left( {\dfrac{3}{2} \times \dfrac{2}{3}} \right) - \dfrac{1}{6}{\tan ^{^{ - 1}}}0 $

 $  = \dfrac{1}{6}{\tan ^{ - 1}}1 - 0 $

 $  = \dfrac{1}{6} \times \dfrac{\pi }{4} $

 $  = \dfrac{\pi }{{24}} $ 

Hence, the correct answer is C.$\dfrac{\pi }{{24}}$


Conclusion

NCERT Solutions for Exercise 7.8 Maths Class 12 Chapter 7 - Integrals provide detailed explanations to all of the questions in the NCERT textbook. This exercise contains 22 questions with fully solved solutions. It includes a range of exercises that help students understand how integrals can be applied in real-world circumstances. With a focus on practical integration methods and their applications, Exercise 7.8 provides students with the knowledge they require to succeed in mathematics exams.


Class 12 Maths Chapter 7: Exercises Breakdown

S.No.

Chapter 7 - Integrals Exercises in PDF Format

1

Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs)

2

Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

4

Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs)

5

Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs)

6

Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

7

Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs)

8

Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs)

9

Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs)

10

Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions



CBSE Class 12 Maths Chapter 7 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.8

1. What is the meaning of NCERT solutions for Integral Exercise 7.8 Maths Class 12 ?

NCERT solution for exercise 7.8 Maths Class 12  contains an explanation of each concept and solution and is taken from the topics named “The second fundamental theorem of integral calculus”, “The first fundamental theorem of integral calculus”, Area function. This chapter concerns the fundamental theorem of calculus, having all the different aspects of integral calculus. These solutions help the students to understand the method of applying the concepts of integral in each problem they are unable to solve.

2. What do you know by a definite integral in Exercise 7.8 Maths Class 12?

A definite integral has a unique value. It is the area under a curve between two fixed points. It is denoted by int ab f(x)dx Where a is called the lower limit and b is called the upper limit. The definite integral is the antiderivative of the function to obtain the function f(x) and the upper and lower limit is applied to find the value f(b) - f(a). The central operation we use the summing up of an infinite number of infinitesimally thin things is one way to visualize it as integral calculus. For more refer NCERT Ex 7.8 Maths Class 12.

3. Where can I download the NCERT solution for Chapter 7 Integral Exercise 7.8 Class 12 Maths?

We can download the NCERT solution for Exercise 7.8 Class 12 Maths from vedantu.com. Solutions are designed by expert teachers of Vedantu. It helps in the preparation for board exams and competitive exams. It contains the concept of integral. Students can learn about definite integral calculus and its properties. These NCERT Solutions are straightforward and can be understood easily.  This solution can be downloaded For free to practice them offline as well.

4. What is the importance of Definite Integral in Exercise 7.8 Class 12 Maths?

We can use definite integrals to find the area under, over, or between curves in calculus. When the area between the curve of the function and the x-axis is equal to the definite integration of the function in the given interval the function is said to be strictly positive. It is used in architecture and electrical engineering. In economics, it helps to find out the total cost function and total revenue function from the marginal cost. A definite integral can be used to determine the mass of the object if its density function is known. Work can also be calculated by integrating a force function.

5. Why should I practice NCERT solutions Exercise 7.8 Class 12 Maths Chapter 7 integral?

We should practice NCERT solutions Exercise 7.8 Class 12 Maths chapter 7 integral because it helps to learn all the rules for the definite integral and to find the area, volume, etc, for a defined range as a limit of a sum. We also learn the properties, formulas, and how to find the definite integral. The practice of their proofs gives a better understanding. Students practice to perform well in higher grades. Practice help to solve other related problems. It also helps to understand the concept of topics and develop problem-solving skills by using Class 12 Exercise 7.8.

6. What are integrals used for in real life in Class 12 Ex 7.8?

According to Class 12 Ex 7.8, Integrals are used to calculate areas, volumes, and many other quantities that can be interpreted as "accumulated change" in various fields like physics, economics, and engineering.

7. How can I improve my understanding of integration techniques from Class 12 Ex 7.8?

Practising different types of integration problems, like those in Exercise 7.8, helps in understanding how to apply integration methods such as substitution and integration by parts effectively by using Class 12 Ex 7.8.

8. Why is it important to learn integration techniques in Class 12 Maths Ex 7.8?

Understanding integration techniques in Class 12 Maths Ex 7.8 is crucial as they help in solving complex problems related to finding areas under curves, volumes of solids, and other practical applications.

9. What is the difference between definite and indefinite integrals in Class 12 Maths Ex 7.8?

Definite integrals calculate the exact numeric value of the accumulated quantity over a specified interval, while indefinite integrals represent a family of functions whose derivatives are the integrand. For more information, visit Vedantu Class 12 Maths Ex 7.8.

10. How do integrals relate to derivatives in Class 12 Exercise 7.8?

In Class 12 Exercise 7.8, the Fundamental Theorem of Calculus shows that integration and differentiation are inverse operations. Integrals find the accumulated change from a rate of change given by derivatives.

11. Can integration be used to find the area under a curve in Class 12 Maths 7.8 Exercise?

Yes, in Class 12 Maths 7.8, integration calculates the area under a curve by dividing it into infinitesimally small strips, finding their areas, and summing them up.

12. How can NCERT Solutions for Class 12 Maths 7.8 Exercise help me prepare for exams?

NCERT Solutions provide clear explanations and step-by-step solutions to all problems in Class 12 Maths 7.8, helping you practice and understand integral concepts thoroughly, which is essential for exams.