Vedantu's Class 12 Integrals Exercise 7.8 Solutions for Exam Success
If you’re finding class 12 integrals exercise 7.8 solutions confusing or tough to solve, you’re not alone. Many students struggle with the questions in this part of Maths Chapter 7, especially when it comes to understanding the steps.


This page gives clear answers for class 12 maths integrals exercise 7.8. Vedantu’s NCERT Solutions are written in a step-by-step way, so you can see how to solve each question easily.
You can use these solutions to check your answers or learn the method for every problem. Download the NCERT Solutions PDF for free and get help whenever you need it.
Score Higher With Class 12 Integrals Exercise 7.8 Solutions for Easy Revision and Exam Success
Exercise 7.8
1.Integrate the given integral $\mathbf{\int\limits_{ - 1}^1 {(x + 1)dx} }$.
Ans: To simplify the question let us suppose, $I = \int\limits_{ - 1}^1 {(x + 1)dx} $
$\int {(x + 1)dx = \dfrac{{{x^2}}}{2}} + x$
Again, let us suppose the function is $F(x) = \dfrac{{{x^2}}}{2} + x$
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F( - 1) $
$= \left( {\dfrac{1}{2} + 1} \right) - \left( {\dfrac{1}{2} - 1} \right) $
$ = \dfrac{1}{2} + 1 - \dfrac{1}{2} + 1 $
$ = 2 $
2.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{1}{x}dx} }$.
Ans: To simplify the question let us suppose, $I = \int\limits_2^3 {\dfrac{1}{x}dx} $
Thus, $\int {\dfrac{1}{x}dx = \log \left| x \right|} $
Again, let us suppose the function is$F(x) = \log \left| x \right|$
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \log \left| 3 \right| - \log \left| 2 \right| $
$ = \log \dfrac{3}{2} $
3.Integrate the given integral $\mathbf{\int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx} }$
Ans: To simplify the question let us suppose,
$I = \int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx} $
$\int\limits_1^2 {\left( {4{x^3} - 5{x^2} + 6x + 9} \right)dx} = 4\left( {\dfrac{{{x^4}}}{4}} \right) - 5\left( {\dfrac{{{x^3}}}{3}} \right) + 6\left( {\dfrac{{{x^2}}}{2}} \right) + 9(x) $
Again, let us suppose the function is
$ \Rightarrow {x^4} - \dfrac{{5{x^3}}}{3} + 3{x^2} + 9x = F(x)$
By second fundamental theorem of calculus, we obtain
$I = F(2) - F(1)$
$ I = \left\{ {{2^4} - \dfrac{{5{{(2)}^3}}}{3} + 3{{(2)}^2} + 9(2)} \right\} - \left\{ {{{(1)}^4} - \dfrac{{5{{(1)}^3}}}{3} + 3{{(1)}^2} + 9(1)} \right\} $
$ = \left( {16 - \dfrac{{40}}{3} + 12 + 18} \right) - \left( {1 - \dfrac{5}{3} + 3 + 9} \right) $
$ = 16 - \dfrac{{40}}{3} + 12 + 18 - 1 + \dfrac{5}{3} - 3 - 9 $
$ = 33 - \dfrac{{35}}{3} $
$ = \dfrac{{99 - 35}}{3} $
$ = \dfrac{{64}}{3} $
4.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\left( {\sin 2xdx} \right)}} $
Ans: To simplify the question let us suppose,
$I = \int\limits_0^{\dfrac{\pi }{4}} {\left( {\sin 2xdx} \right)} $
$\int {\sin 2xdx = \left( {\dfrac{{ - \cos 2x}}{2}} \right)} $
Again, let us suppose the function is$\left( {\dfrac{{ - \cos 2x}}{2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) - F(0) $
$ = - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $
$ = - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $
$ = - \dfrac{1}{2}\left[ {\cos 2\left( {\dfrac{\pi }{4}} \right) - \cos 0} \right] $
$ = - \dfrac{1}{2}\left[ {0 - 1} \right] $
$ = \dfrac{1}{2} $
5.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos 2xdx} \right)} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos 2xdx} \right)} $
$ \int {\cos 2xdx = \left( {\dfrac{{\sin 2x}}{2}} \right)} $
Again, let us suppose the function is$\left( {\dfrac{{\sin 2x}}{2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{2}} \right) - F(0) $
$ = \dfrac{1}{2}\left[ {\sin 2\left( {\dfrac{\pi }{2}} \right) - \sin 0} \right] $
$ = \dfrac{1}{2}\left[ {\sin \pi - \sin 0} \right] $
$ = \dfrac{1}{2}\left[ {0 - 0} \right] $
$ = 0 $
6.Integrate the given integral $\mathbf{\int\limits_4^5 {{e^x}dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_4^5 {{e^x}dx} $
$ \int\limits_4^5 {{e^x}dx} = {e^x} = F(x) $
By second fundamental theorem of calculus, we obtain
$I = F(5) - F(4) $
$ = {e^5} - {e^4} $
$ = {e^4}\left( {e - 1} \right) $
7.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\tan xdx} }$
Ans: To simplify the question let us suppose,
$I = \int\limits_0^{\dfrac{\pi }{4}} {\tan xdx} $
$ \int {\tan xdx = - \log \left| {\cos x} \right|} $
Again, let us suppose the function is$ - \log \left| {\cos x} \right| = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) - F(0) $
$ = - \log \left| {\cos \dfrac{\pi }{4}} \right| + \log \left| {\cos 0} \right| $
$ = - \log \left| {\dfrac{1}{{\sqrt 2 }}} \right| + \log \left| 1 \right| $
$ = - \log {\left( 2 \right)^{ - \dfrac{1}{2}}} $
$ = \dfrac{1}{2}\log 2 $
8.Integrate the given integral $\mathbf{\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\cos ecxdx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{4}} {\cos ecxdx} $
$ \int {\cos ecxdx = \log \left| {\cos ecx\dfrac{\pi }{6} - \cot \dfrac{\pi }{6}} \right|} $
Again, let us suppose the function is$F(x) = \log \left| {\cos x} \right|$
By second fundamental theorem of calculus, we obtain
$I = F\left( {\dfrac{\pi }{4}} \right) - F\left( {\dfrac{\pi }{6}} \right) $
$ = \log \left| {\cos ec\dfrac{\pi }{4} - \cot \dfrac{\pi }{4}} \right| - \log \left| {\cos ec\dfrac{\pi }{6} - \cot \dfrac{\pi }{6}} \right| $
$ = \log \left| {\sqrt 2 - 1} \right| - \log \left| {2 - \sqrt 3 } \right| $
$ = \log \left( {\dfrac{{\sqrt 2 - 1}}{{2 - \sqrt 3 }}} \right) $
9.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }}} }$
Ans: To simplify the question let us suppose,
$I = \int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }}} $
Again, let us suppose the function is
$ I = \int {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }} = F(x)} $
$ {\sin ^{ - 1}}x = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F(0) $
$ = {\sin ^{ - 1}}(1) - {\sin ^{ - 1}}(0) $
$ = \dfrac{\pi }{2} - 0 $
$ = \dfrac{\pi }{2} $
10.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {1 + {x^2}} }}}} $
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^1 {\dfrac{{dx}}{{1 + {x^2}}}} $
$ \int {\dfrac{{dx}}{{1 + {x^2}}} = {{\tan }^{ - 1}}} $
Again, let us suppose the function is
${\tan ^{ - 1}}x = F(x)$
By second fundamental theorem of calculus, we obtain
$I = F(1) - F(0) $
$= {\tan ^{ - 1}}(1) - {\tan ^{ - 1}}(0) $
$ = \dfrac{\pi }{4} $
11.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{{dx}}{{{x^2} - 1}}} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_2^3 {\dfrac{{dx}}{{{x^2} - 1}}} $
$ \int {\dfrac{{dx}}{{{x^2} - 1}} = \dfrac{1}{2}\log \left| {\dfrac{{x - 1}}{{x + 1}}} \right|} $
Again, let us suppose the function is
$\dfrac{1}{2}\log \left| {\dfrac{{x - 1}}{{x + 1}}} \right| = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \dfrac{1}{2}\left[ {\log \left| {\dfrac{{3 - 1}}{{3 + 1}}} \right| - \log \left| {\dfrac{{2 - 1}}{{2 + 1}}} \right|} \right] $
$ = \dfrac{1}{2}\left[ {\log \left| {\dfrac{2}{4}} \right| - \log \left| {\dfrac{1}{3}} \right|} \right] $
$ = \dfrac{1}{2}\left[ {\log \dfrac{1}{2} - \log \dfrac{1}{3}} \right] $
$ = \dfrac{1}{2}\left[ {\log \dfrac{3}{2}} \right] $
12.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{2}} {{{\cos }^2}xdx} }$
Ans: To simplify the question let us suppose,
$\int {{{\cos }^2}xdx = \int {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)dx} } $
$ \dfrac{x}{2} + \dfrac{{\sin 2x}}{4} = \dfrac{1}{2}\left( {x + \dfrac{{\sin 2x}}{2}} \right) $
Again, let us suppose the function is
$\dfrac{1}{2}\left( {x + \dfrac{{\sin 2x}}{2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{2}} \right) - F(0) $
$ = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{2} + \dfrac{{\sin \pi }}{2}} \right) - \left( {0 + \dfrac{{\sin 0}}{2}} \right)} \right] $
$ = \dfrac{1}{2}\left[ {\dfrac{\pi }{2} + 0 - 0 + 0} \right] $
$ = \dfrac{\pi }{4} $
13.Integrate the given integral $\mathbf{\int\limits_2^3 {\dfrac{{xdx}}{{{x^2} + 1}}}} $
Ans: To simplify the question let us suppose,
$ I = \int\limits_2^3 {\dfrac{{xdx}}{{{x^2} + 1}}} $
$ \int {\dfrac{{xdx}}{{{x^2} + 1}}} $
$ = \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}dx} $
$ = \dfrac{1}{2}\log \left( {1 + {x^2}} \right) $
Again, let us suppose the function is
$\dfrac{1}{2}\log \left( {1 + {x^2}} \right) = F(x)$
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \dfrac{1}{2}\left[ {\log \left( {1 + {{\left( 3 \right)}^2}} \right) - \log \left( {1 + {{(2)}^2}} \right)} \right] $
$ = \dfrac{1}{2}\left[ {\log 10 - \log 5} \right] $
$ = \dfrac{1}{2}\left[ {\log \dfrac{{10}}{5}} \right] $
$= \dfrac{1}{2}\left[ {\log 2} \right] $
14.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^1 {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx} $
$ \int {\dfrac{{2x + 3}}{{5{x^2} + 1}}dx} $
$ = \dfrac{1}{5}\int {\dfrac{{5\left( {2x + 3} \right)}}{{5{x^2} + 1}}dx} $
$ = \dfrac{1}{5}\int {\dfrac{{\left( {10x + 15} \right)}}{{5{x^2} + 1}}dx} $
$ = \dfrac{1}{5}\int {\dfrac{{10x}}{{5{x^2} + 1}}dx} + 3\int {\dfrac{1}{{5{x^2} + 1}}dx} $
$= \dfrac{1}{5}\int {\dfrac{{10x}}{{5{x^2} + 1}}dx} + 3\int {\dfrac{1}{{5\left( {{x^2} + \dfrac{1}{5}} \right)}}dx} $
$ = \dfrac{1}{5}\log \left( {5{x^2} + 1} \right) + \dfrac{3}{5}\dfrac{1}{{\dfrac{1}{{\sqrt 5 }}}}{\tan ^{ - 1}}\dfrac{x}{{\dfrac{1}{{\sqrt 5 }}}} $
$ = \dfrac{1}{5}\log \left( {5{x^2} + 1} \right) + \dfrac{3}{{\sqrt 5 }}{\tan ^{ - 1}}\left( {\sqrt 5 } \right)x $
$ = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$ = \dfrac{1}{5}\left[ {\log \left( {1 + 5} \right) - \dfrac{3}{{\sqrt 5 }}\log \left( {\sqrt 5 } \right)} \right] - \left[ {\dfrac{1}{5}\log (1) + \dfrac{3}{{\sqrt 5 }}{{\tan }^{ - 1}}(0)} \right] $
$ = \dfrac{1}{5}\left[ {\log 6} \right] + \dfrac{3}{{\sqrt 5 }}{\tan ^{ - 1}}\sqrt 5 $
15.Integrate the given integral $\mathbf{\int\limits_0^1 {x{e^{{x^2}}}dx} }$
Ans: To simplify the question let us suppose,
$= \int\limits_0^1 {x{e^{{x^2}}}dx}$
$ {x^2} = t $
$ \Rightarrow 2xdx = dt $
As $x \to 0,t \to 0$ ,
Again $x \to 1,t \to 1,$,
$\therefore I = \dfrac{1}{2}\int\limits_0^1 {{e^t}dt} $
$ \dfrac{1}{2}\int\limits_0^1 {{e^t}dt} = \dfrac{1}{2}{e^t}dt $
$ \dfrac{1}{2}{e^t}dt = F(t) $
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F(0) $
$ = \dfrac{1}{2}e - \dfrac{1}{2}{e^0} $
$ = \dfrac{1}{2}\left( {e - 1} \right) $
16.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{5{x^2}}}{{{x^2} + 4x + 3}}dx}} $
Ans: To simplify the question let us suppose,
$I = \int\limits_0^1 {\dfrac{{5{x^2}}}{{{x^2} + 4x + 3}}dx} $
Dividing $5{x^2}$by ${x^2} + 4x + 3$, we obtain
$ I = \int\limits_1^2 {\left\{ {5 - \dfrac{{20x + 15}}{{{x^2} + 4x + 3}}} \right\}} dx $
$ = \int\limits_1^2 {5dx - \int\limits_1^2 {\dfrac{{20x + 15}}{{{x^2} + 4x + 3}}} } dx $
$ = \left[ {5x} \right]_1^2 - \int\limits_1^2 {\dfrac{{20x + 15}}{{{x^2} + 4x + 3}}dx} $
$ I = 5 - {I_1} $
Consider,
Let,
$20x + 15 = A\dfrac{d}{{dx}}\left( {{x^2} + 4x + 3} \right) + B $
$= 2Ax + (4A + B) $
Equating the coefficients of $x$ and constant term, we obtain
$A = 10$ and $B = - 25$
Let,${x^2} + 4x + 3 = t $
$ \Rightarrow \left( {2x + 4} \right)dx = dt $
$ \Rightarrow {I_1} = 10\int {\dfrac{{dt}}{t} - 25\int {\dfrac{{dx}}{{{{\left( {x + 2} \right)}^2} - {1^2}}}} } $
$ = 10\log t - 25\left[ {\dfrac{1}{2}\log \left( {\dfrac{{x + 1}}{{x + 3}}} \right)} \right]_1^2 $
$ = \left[ {10\log 15 - 10\log 18} \right] - 25\left[ {\dfrac{1}{2}\log \dfrac{3}{5} - \dfrac{1}{2}\log \dfrac{2}{4}} \right] $
$ = \left[ {10\log 5 + 10\log 3 - 10\log 4 - 10\log 2} \right] - \dfrac{{25}}{2}\left[ {\log 3 - \log 5 - \log 2 + \log 4} \right] $
$ = \left[ {10 + \dfrac{{25}}{2}} \right]\log 5 + \left[ { - 10 - \dfrac{{25}}{2}} \right]\log 4 + \left[ {10 + \dfrac{{25}}{2}} \right]\log 3 + \left[ { - 10 + \dfrac{{25}}{2}} \right]\log 2 $
$ = \dfrac{{45}}{2}\log 5 - \dfrac{{45}}{2}\log 4 - \dfrac{5}{2}\log 3 + \dfrac{5}{2}\log 2 $
$ = \dfrac{{45}}{2}\log \dfrac{5}{4} - \dfrac{5}{2}\log \dfrac{3}{2} $
Substituting the value of ${I_1}$in (1), we obtain
$ I = 5 - \left[ {\dfrac{{45}}{2}\log \dfrac{5}{2} - \dfrac{5}{2}\log \dfrac{3}{2}} \right] $
$ = 5 - \dfrac{5}{2}\left[ {9\log \dfrac{5}{2} - \log \dfrac{3}{2}} \right] $
17.Integrate the given integral $\mathbf{\int\limits_0^{\dfrac{\pi }{4}} {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^{\dfrac{\pi }{4}} {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx} $
$ \int {\left( {2{{\sec }^2}x + {x^3} + 2} \right)dx = 2\tan x + \dfrac{{{x^4}}}{4} + 2x} $
$ 2\tan x + \dfrac{{{x^4}}}{4} + 2x = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) + F\left( 0 \right) $
$ = \left\{ {\left( {2\tan \dfrac{\pi }{4} + \dfrac{1}{4}{{\left( {\dfrac{\pi }{4}} \right)}^2} + 2\left( {\dfrac{\pi }{4}} \right)} \right) - \left( {2\tan 0 + 0 + 0} \right)} \right\} $
$ = 2\tan \dfrac{\pi }{4} + {\dfrac{\pi }{{{4^5}}}^4} + \dfrac{\pi }{2} $
$= 2 + \dfrac{\pi }{2} + \dfrac{{{\pi ^4}}}{{1024}} $
18.Integrate the given integral $\mathbf{\int\limits_0^\pi {\left( {{{\sin }^2}\dfrac{x}{2} - {{\cos }^2}\dfrac{x}{2}} \right)dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^\pi {\left( {{{\sin }^2}\dfrac{x}{2} - {{\cos }^2}\dfrac{x}{2}} \right)dx} $
$ = - \int\limits_0^\pi {\left( {{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}} \right)dx} $
$= - \int\limits_0^\pi {\cos xdx} $
$= - \int\limits_0^\pi {\cos xdx} = - \sin x $
By second fundamental theorem of calculus, we obtain
$ I = F\left( {\dfrac{\pi }{4}} \right) + F\left( 0 \right) $
$ = - \sin \pi + \sin 0 $
$ = 0 $
19.Integrate the given integral $\mathbf{\int\limits_0^1 {\dfrac{{6x + 3}}{{{x^2} + 4}}dx} }$
Ans: To simplify the question let us suppose,
$ I = \int\limits_0^2 {\dfrac{{6x + 3}}{{{x^2} + 4}}dx} $
$ \int {\dfrac{{6x + 3}}{{{x^2} + 4}}dx} $
$ = 3\int {\dfrac{{2x + 1}}{{{x^2} + 4}}dx} $
$ = 3\int {\dfrac{{2x + 1}}{{{x^2} + 4}}dx} $
$ = 3\int {\dfrac{{2x}}{{{x^2} + 4}}dx} + 3\int {\dfrac{1}{{{x^2} + 4}}dx} $
$ = 3\log ({x^2} + 4) + \dfrac{3}{2}{\tan ^{ - 1}}\dfrac{x}{2} $
$ = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(3) - F(2) $
$= 3\left[ {\log \left( {{2^2} + 4} \right) - \dfrac{3}{2}{{\tan }^{ - 1}}\left( {\dfrac{2}{2}} \right)} \right] - \left[ {3\log (0 + 4) + \dfrac{3}{2}{{\tan }^{ - 1}}(\dfrac{0}{2})} \right] $
$ = 3\left[ {\log 8} \right] + \dfrac{3}{2}{\tan ^{ - 1}}1 - 3\log 4 - \dfrac{3}{2}{\tan ^{ - 1}}0 $
$ = 3\log 8 + \dfrac{3}{2}{\tan ^{ - 1}}1 - 3\log 4 - \dfrac{3}{2}{\tan ^{ - 1}}0 $
$= 3\log 8 + \dfrac{3}{2}\left( {\dfrac{\pi }{4}} \right) - 3\log 4 - 0 $
$= 3\log \left( {\dfrac{8}{4}} \right) + \dfrac{{3\pi }}{8} $
$= 3\log 2 + \dfrac{{3\pi }}{8} $
20.Integrate the given integral $\int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx} $
Ans: To simplify the question let us suppose,
$I = \int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx} $
$ \int\limits_0^1 {\left( {x{e^x} - \sin \dfrac{{\pi x}}{4}} \right)dx} = x\int {{e^x}dx - \int {\left\{ {\left( {\dfrac{d}{{dx}}x} \right)\int {{e^x}dx} } \right\}dx + \left\{ {\dfrac{{ - \cos \dfrac{{\pi x}}{4}}}{{\dfrac{\pi }{4}}}} \right\}} } $
$ = x{e^x} - x\int {{e^x}dx - \dfrac{4}{\pi }\cos \pi \dfrac{x}{4}} $
$ = F(x) $
By second fundamental theorem of calculus, we obtain
$ I = F(1) - F(0) $
$= \left( {{e^1} - {e^1} - \dfrac{4}{\pi }\cos \pi \dfrac{1}{4}} \right) - \left( {0.{e^0} - {e^0} - \dfrac{4}{\pi }\cos 0} \right) $
$ = e - e - \dfrac{4}{\pi }\left( {\dfrac{1}{{\sqrt 2 }}} \right) + 1 + \dfrac{4}{\pi } $
$= 1 + \dfrac{4}{\pi } - \dfrac{{2\sqrt 2 }}{\pi } $
21.Integrate the given integral $\int\limits_1^{\sqrt 3 } {\dfrac{{dx}}{{1 + {x^2}}}} $
\[\dfrac{\pi }{3}\]
$\dfrac{{2\pi }}{3}$
$\dfrac{\pi }{6}$
$\dfrac{\pi }{{12}}$
Ans: To simplify the question let us suppose,
$ \int {\dfrac{{dx}}{{1 + {x^2}}}} = {\tan ^{ - 1}}x $
By second fundamental theorem of calculus, we obtain
$ \int\limits_1^{\sqrt 3 } {\dfrac{{dx}}{{1 + {x^2}}}} = F(\sqrt 3 ) - F(1) $
$ = {\tan ^{ - 1}}\sqrt 3 - {\tan ^{^{ - 1}}}1 $
$= \dfrac{\pi }{3} - \dfrac{\pi }{4} $
$ = \dfrac{\pi }{{12}} $
Hence, the correct Answer is $\dfrac{\pi }{{12}}$
22.Integrate the given integral$\int {\dfrac{{dx}}{{4 + 9{x^2}}}} = \int {\dfrac{{dx}}{{{{(2)}^2} + {{(3x)}^2}}}}$
$\dfrac{\pi }{6} $
$\dfrac{\pi }{{12}} $
$\dfrac{\pi }{{24}} $
$\dfrac{\pi }{4} $
equals
Ans: To simplify the question let us suppose,
3x = t
$\Rightarrow 3dx = dt$
$\int {\dfrac{{dx}}{{{{(2)}^2} + {{(3x)}^2}}}} = \dfrac{1}{3}\int {\dfrac{{dt}}{{{{(2)}^2} + {{(t)}^2}}}} $
$ = \dfrac{1}{3}\left[ {\dfrac{1}{2}{{\tan }^{ - 1}}\dfrac{t}{2}} \right] $
$ = \dfrac{1}{6}{\tan ^{ - 1}}\left( {\dfrac{{3x}}{2}} \right) $
$= F(x) $
By second fundamental theorem of calculus,
$\int\limits_0^{\dfrac{2}{3}} {\dfrac{{dx}}{{4 + 9{x^2}}}} = F\left( {\dfrac{2}{3}} \right) - F(0) $
$= \dfrac{1}{6}{\tan ^{ - 1}}\left( {\dfrac{3}{2} \times \dfrac{2}{3}} \right) - \dfrac{1}{6}{\tan ^{^{ - 1}}}0 $
$ = \dfrac{1}{6}{\tan ^{ - 1}}1 - 0 $
$ = \dfrac{1}{6} \times \dfrac{\pi }{4} $
$ = \dfrac{\pi }{{24}} $
Hence, the correct answer is C.$\dfrac{\pi }{{24}}$
Conclusion
NCERT Solutions for Exercise 7.8 Maths Class 12 Chapter 7 - Integrals provide detailed explanations to all of the questions in the NCERT textbook. This exercise contains 22 questions with fully solved solutions. It includes a range of exercises that help students understand how integrals can be applied in real-world circumstances. With a focus on practical integration methods and their applications, Exercise 7.8 provides students with the knowledge they require to succeed in mathematics exams.
Class 12 Maths Chapter 7: Exercises Breakdown
S.No. | Chapter 7 - Integrals Exercises in PDF Format | |
1 | Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs) | |
2 | Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs) | |
3 | Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs) | |
4 | Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs) | |
5 | Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs) | |
6 | Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs) | |
7 | Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs) | |
8 | Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs) | |
9 | Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs) | |
10 | Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions |
CBSE Class 12 Maths Chapter 7 Other Study Materials
S.No. | Important Links for Chapter 7 Integrals |
1 | |
2 | |
3 | |
4 |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT Class 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |

















