Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

ffImage
banner

NCERT Solutions for Exercise 3.3 Class 12 Maths Chapter 3 - Free PDF Download

Chapter 3 of Class 12 Maths in the NCERT curriculum focuses on Matrices, a fundamental concept in algebra. Exercise 3.3 delves into various operations on matrices, including addition, subtraction, and multiplication. Understanding these operations is crucial for solving complex problems in linear algebra and for applications in fields such as computer science, physics, and economics. Our NCERT solutions for Exercise 3.3 provide step-by-step explanations and detailed answers to help students grasp these concepts thoroughly. With these solutions, students can enhance their problem-solving skills and build a strong foundation in matrix theory.

toc-symbolTable of Content
toggle-arrow


Glance on Maths Ex 3.3 Class 12 Chapter 3 Matrices 

  • Revisiting square matrices, rectangular matrices, diagonal matrices, and identity matrices.

  • Encounter problems on addition, subtraction, scalar multiplication, and multiplication of matrices.

  • Understanding properties like associative and distributive properties for matrix addition, and properties of scalar multiplication.

  • Finding the transpose (swapping rows and columns) of a matrix.

  • Identifying matrices where elements are mirrored across the diagonal (symmetric) or negated across the diagonal (skew-symmetric).


Topics Covered in the NCERT Solutions for Class 12 Maths Chapter 3

  • Transpose of a Matrix

  • Properties of the transpose of the matrices

  • Symmetric and Skew Symmetric Matrices

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 3- Matrices Exercise 3.3

Exercise 3.3

1. Find the transpose of each of the following matrices:

\[\begin{align} & \mathrm{(i)}\left[ \begin{array}{*{35}{l}} \mathrm{5} \\ \mathrm{1/2} \\ \mathrm{-1} \\ \end{array} \right] \\ & \mathrm{(ii)}\left[ \begin{matrix} \mathrm{1} & \mathrm{-1} \\ \mathrm{2} & \mathrm{3} \\ \end{matrix} \right] \\ & \mathrm{(iii)}\left[ \begin{matrix} \mathrm{-1} & \mathrm{5} & \mathrm{6} \\ \sqrt{\mathrm{3}} & \mathrm{5} & \mathrm{6} \\ \mathrm{2} & \mathrm{3} & \mathrm{-1} \\ \end{matrix} \right] \\ \end{align}\]

Ans:

Find transpose

\[(i)A=\left[ \begin{array}{*{35}{l}} 5 \\ 1/2 \\ -1 \\ \end{array} \right]\Rightarrow {{A}^{T}}=\left[ \begin{matrix} 5 & \frac{1}{2} & -1 \\ \end{matrix} \right]\] \[(ii)A=\left[ \begin{matrix} 1 & -1 \\ 2 & 3 \\ \end{matrix} \right]\Rightarrow {{A}^{T}}=\left[ \begin{matrix} 1 & 2 \\ -1 & 3 \\ \end{matrix} \right]\] \[(iii)A=\left[ \begin{matrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \\ \end{matrix} \right]\Rightarrow {{A}^{T}}=\left[ \begin{matrix} -1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1 \\ \end{matrix} \right]\]


2. If \[\mathrm{A=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{2} & \mathrm{3} \\ \mathrm{5} & \mathrm{7} & \mathrm{9} \\ \mathrm{-2} & \mathrm{1} & \mathrm{1} \\ \end{matrix} \right]\] and \[\mathrm{B=}\left[ \begin{matrix} \mathrm{-4} & \mathrm{1} & \mathrm{-5} \\ \mathrm{1} & \mathrm{2} & \mathrm{0} \\ \mathrm{1} & \mathrm{3} & \mathrm{1} \\ \end{matrix} \right]\] , then verify that \[\begin{align} & \mathrm{(i)}\left( \mathrm{A+B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ +B }\!\!'\!\!\text{ } \\ & \mathrm{(ii)}\left( \mathrm{A-B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ -B }\!\!'\!\!\text{ } \\ \end{align}\]

Ans:

We have 

\[\begin{align} & A'=\left[ \begin{matrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1 \\ \end{matrix} \right]B'=\left[ \begin{matrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \\ \end{matrix} \right] \\ & (i)A+B=\left[ \begin{matrix} -5 & 3 & -2 \\ 6 & 9 & 9 \\ -1 & 4 & 2 \\ \end{matrix} \right]\Rightarrow \left( A+B \right)'=\left[ \begin{matrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \\ \end{matrix} \right] \\ & A'+B'=\left[ \begin{matrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified that \[\left( A+B \right)'=A'+B'\] \[\begin{align} & (ii)A-B=\left[ \begin{matrix} 3 & 1 & 8 \\ 4 & 5 & 9 \\ -3 & -2 & 0 \\ \end{matrix} \right]\Rightarrow \left( A-B \right)'=\left[ \begin{matrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \\ \end{matrix} \right] \\ & A'-B'=\left[ \begin{matrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1 \\ \end{matrix} \right]-\left[ \begin{matrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \\ \end{matrix} \right] \\ \end{align}\]

Hence, we have verified that \[\left( A-B \right)'=A'-B'\]


3. If\[\mathrm{A }\!\!'\!\!\text{ =}\left[ \begin{matrix} \mathrm{3} & \mathrm{4} \\ \mathrm{-1} & \mathrm{2} \\ \mathrm{0} & \mathrm{1} \\ \end{matrix} \right]\] and \[\mathrm{B=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{2} & \mathrm{1} \\ \mathrm{1} & \mathrm{2} & \mathrm{3} \\ \end{matrix} \right]\] , then verify that \[\begin{align} & \mathrm{(i)}\left( \mathrm{A+B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ +B }\!\!'\!\!\text{ } \\ & \mathrm{(ii)}\left( \mathrm{A-B} \right)\mathrm{ }\!\!'\!\!\text{ =A }\!\!'\!\!\text{ -B }\!\!'\!\!\text{ } \\ \end{align}\]

Ans:

We have 

\[\begin{align} & A=\left[ \begin{matrix} 3 & -1 & 0 \\ 4 & 2 & 1 \\ \end{matrix} \right]B'=\left[ \begin{matrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \\ \end{matrix} \right] \\ & (i)A+B=\left[ \begin{matrix} 2 & 1 & 1 \\ 5 & 4 & 4 \\ \end{matrix} \right]\Rightarrow \left( A+B \right)'=\left[ \begin{matrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \\ \end{matrix} \right] \\ & A'+B'=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified that \[\left( A+B \right)'=A'+B'\] \[\begin{align} & (ii)A-B=\left[ \begin{matrix} 4 & -3 & -1 \\ 3 & 0 & -2 \\ \end{matrix} \right]\Rightarrow \left( A-B \right)'=\left[ \begin{matrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \\ \end{matrix} \right] \\ & A'-B'=\left[ \begin{matrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \\ \end{matrix} \right]-\left[ \begin{matrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified that \[\left( A-B \right)'=A'-B'\]


4. If\[\mathrm{A }\!\!'\!\!\text{ =}\left[ \begin{matrix} \mathrm{-2} & \mathrm{3} \\ \mathrm{1} & \mathrm{2} \\ \end{matrix} \right]\mathrm{ }\!\!\And\!\!\text{ B=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{0} \\ \mathrm{1} & \mathrm{2} \\ \end{matrix} \right]\] , then find \[\left( \mathrm{A+2B} \right)\mathrm{ }\!\!'\!\!\text{ }\]

Ans:

Solve for the condition\[\begin{align} & \therefore A=\left[ \begin{matrix} -2 & 1 \\ 3 & 2 \\ \end{matrix} \right] \\ & \therefore A+2B=\left[ \begin{matrix} -2 & 1 \\ 3 & 2 \\ \end{matrix} \right]+2\left[ \begin{matrix} -1 & 0 \\ 1 & 2 \\ \end{matrix} \right]=\left[ \begin{matrix} -2 & 1 \\ 3 & 2 \\ \end{matrix} \right]+\left[ \begin{matrix} -2 & 0 \\ 2 & 4 \\ \end{matrix} \right]=\left[ \begin{matrix} -4 & 1 \\ 5 & 6 \\ \end{matrix} \right] \\ & \therefore (A+2B)=\left[ \begin{matrix} -4 & 5 \\ 1 & 6 \\ \end{matrix} \right] \\ \end{align}\]


5. For the matrix \[\mathrm{A }\;\;\And\;\;\text{ B}\] , verify that \[\left( \mathrm{AB} \right)\mathrm{ }\!\!'\!\!\text{ =B }\!\!'\!\!\text{ A }\!\!'\!\!\text{ }\]where

\[\begin{align} & \mathrm{(i)A=}\left[ \begin{matrix} \mathrm{1} \\ \mathrm{-4} \\ \mathrm{3} \\ \end{matrix} \right]\mathrm{,B=}\left[ \begin{matrix} \mathrm{-1} & \mathrm{2} & \mathrm{1} \\ \end{matrix} \right] \\ & \mathrm{(i)A=}\left[ \begin{matrix} \mathrm{0} \\ \mathrm{1} \\ \mathrm{2} \\ \end{matrix} \right]\mathrm{,B=}\left[ \begin{matrix} \mathrm{1} & \mathrm{5} & \mathrm{7} \\ \end{matrix} \right] \\ \end{align}\] 

Ans:

\[\begin{align} & (i)~AB=\left[ \begin{matrix} 1 \\ -4 \\ 3 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 2 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \\ \end{matrix} \right] \\ & \therefore (AB{)}'=\left[ \begin{matrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \\ \end{matrix} \right] \\ & B'A'=\left[ \begin{matrix} -1 \\ 2 \\ 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & -4 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \\ \end{matrix} \right] \\ \end{align}\] Hence, we have verified \[\left( AB \right)'=B'A'\] \[\begin{align} & (ii)~AB=\left[ \begin{matrix} 0 \\ 1 \\ 2 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 5 & 7 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14 \\ \end{matrix} \right] \\ & \therefore (AB{)}'=\left[ \begin{matrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \\ \end{matrix} \right] \\ & B'A'=\left[ \begin{matrix} 1 \\ 5 \\ 7 \\ \end{matrix} \right]\left[ \begin{matrix} 0 & 1 & 2 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \\ \end{matrix} \right] \\ \end{align}\]

Hence, we have verified \[\left( AB \right)'=B'A'\]


6. If \[\begin{align} & \mathrm{(i)A=}\left[ \begin{matrix} \mathrm{cos }\;\;\alpha\;\;\text{ } & \mathrm{sin }\;\;\alpha\!\!\text{ } \\ \mathrm{-sin }\;\;\alpha\;\;\text{ } & \mathrm{cos }\;\;\alpha\;\;\text{ } \\ \end{matrix} \right]\mathrm{, then verify thatA }\;\;\;\;\text{ A=I} \\ & \mathrm{(ii)A=}\left[ \begin{matrix} \mathrm{sin }\;\;\alpha\;\;\text{ } & \mathrm{cos }\;\;\alpha\!\!\text{ } \\ \mathrm{-cos }\;\;\alpha\!\!\text{ } & \mathrm{sin }\;\;\alpha\!\!\text{ } \\ \end{matrix} \right]\mathrm{, then verify thatA }\;\;'\;\;\text{ A=I} \\ \end{align}\]

Ans:

Solve for the condition 

  1. \[\begin{align} & A=\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & \therefore A'=\left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right]\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha & \sin \alpha \cos \alpha -\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha -\sin \alpha \cos \alpha & {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]=I \\ \end{align}\] \[\begin{align} & A=\left[ \begin{matrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \\ \end{matrix} \right] \\ & \therefore A'=\left[ \begin{matrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \\ \end{matrix} \right]\left[ \begin{matrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha & \sin \alpha \cos \alpha -\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha -\sin \alpha \cos \alpha & {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\ \end{matrix} \right] \\ & A'A=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]=I \\ \end{align}\]


7. (i) Show that the matrix \[\mathrm{A=}\left[ \begin{matrix} \mathrm{1} & \mathrm{-1} & \mathrm{5} \\ \mathrm{-1} & \mathrm{2} & \mathrm{1} \\ \mathrm{5} & \mathrm{1} & \mathrm{3} \\ \end{matrix} \right]\] is a symmetric matrix (ii) Show that the matrix \[\mathrm{A=}\left[ \begin{matrix} \mathrm{0} & \mathrm{1} & \mathrm{-1} \\ \mathrm{-1} & \mathrm{0} & \mathrm{1} \\ \mathrm{1} & \mathrm{-1} & \mathrm{0} \\ \end{matrix} \right]\] is a skew symmetric matrix

Ans:

(i) We have 

\[\begin{align} & A'=\left[ \begin{matrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \\ \end{matrix} \right]=A \\ & \therefore A'=A \\ \end{align}\] Hence, A is a symmetric matrix

(ii) We have \[\begin{align} & A'=\left[ \begin{matrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \\ \end{matrix} \right]=-\left[ \begin{matrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ \end{matrix} \right]=-A \\ & \therefore A'=-A \\ \end{align}\]

Hence, A is a skew-symmetric matrix


8. For the matrix \[\mathrm{A=}\left[ \begin{matrix} \mathrm{1} & \mathrm{5} \\ \mathrm{6} & \mathrm{7} \\ \end{matrix} \right]\], verify that (i) \[\left( \mathrm{A+A }\!\!'\!\!\text{ } \right)\] is a symmetric matrix (ii) \[\left( \mathrm{A+A }\!\!'\!\!\text{ } \right)\] is a skew symmetric matrix 

Ans:

\[A=\left[ \begin{matrix} 1 & 5 \\ 6 & 7 \\ \end{matrix} \right],A'=\left[ \begin{matrix} 1 & 6 \\ 5 & 7 \\ \end{matrix} \right]\] \[\begin{align} & (i)A+A'=\left[ \begin{matrix} 1 & 5 \\ 6 & 7 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & 6 \\ 5 & 7 \\ \end{matrix} \right]=\left[ \begin{matrix} 2 & 11 \\ 11 & 14 \\ \end{matrix} \right] \\ & \left( A+A' \right)'=\left[ \begin{matrix} 2 & 11 \\ 11 & 14 \\ \end{matrix} \right]=A+A' \\ \end{align}\] Hence, \[\left( A+A' \right)\]is a symmetric matrix \[\begin{align} & (ii)A-A'=\left[ \begin{matrix} 1 & 5 \\ 6 & 7 \\ \end{matrix} \right]-\left[ \begin{matrix} 1 & 6 \\ 5 & 7 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & -1 \\ 1 & 0 \\ \end{matrix} \right] \\ & \left( A-A' \right)'=\left[ \begin{matrix} 0 & 1 \\ -1 & 0 \\ \end{matrix} \right]=-\left[ \begin{matrix} 0 & -1 \\ 1 & 0 \\ \end{matrix} \right]=A+A' \\ \end{align}\]

Hence, \[\left( A-A' \right)\]is a skew-symmetric matrix


9. Find \[\frac{\mathrm{1}}{\mathrm{2}}\left( \mathrm{A+A }\;\;'\;\;\text{ } \right)\mathrm{ }\;\;\And\!\!\text{ }\frac{\mathrm{1}}{\mathrm{2}}\left( \mathrm{A-A }\;\;'\;\;\text{ } \right)\] , when \[\mathrm{A=}\left[ \begin{matrix} \mathrm{0} & \mathrm{a} & \mathrm{b} \\ \mathrm{-a} & \mathrm{0} & \mathrm{c} \\ \mathrm{-b} & \mathrm{-c} & \mathrm{0} \\ \end{matrix} \right]\]

Ans:

The given matrix is \[A=\left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right]\], then \[A'=\left[ \begin{matrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \\ \end{matrix} \right]\] \[\begin{align} & \frac{1}{2}\left( A+A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right]+\left[ \begin{matrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A+A' \right)=\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix} \right] \\ \end{align}\] \[\begin{align} & \frac{1}{2}\left( A-A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right]-\left[ \begin{matrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A-A' \right)=\left[ \begin{matrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \\ \end{matrix} \right] \\ \end{align}\]


10. Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

\[\left[ \begin{matrix} \mathrm{3} & \mathrm{5} \\ \mathrm{1} & \mathrm{-1} \\ \end{matrix} \right]\]

Ans:

\[\begin{align} & (i)\frac{1}{2}\left( A+A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 3 & 5 \\ 1 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} 3 & 1 \\ 5 & -1 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A+A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 6 & 6 \\ 6 & -2 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A+A' \right)=\left[ \begin{matrix} 3 & 3 \\ 3 & -1 \\ \end{matrix} \right] \\ \end{align}\] Thus, \[\frac{1}{2}\left( A+A' \right)\] is a symmetric matrix. \[\begin{align} & \frac{1}{2}\left( A-A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 3 & 5 \\ 1 & -1 \\ \end{matrix} \right]-\left[ \begin{matrix} 3 & 1 \\ 5 & -1 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A-A' \right)=\frac{1}{2}\left( \left[ \begin{matrix} 0 & 4 \\ -4 & 0 \\ \end{matrix} \right] \right) \\ & \frac{1}{2}\left( A-A' \right)=\left[ \begin{matrix} 0 & 2 \\ -2 & 0 \\ \end{matrix} \right] \\ \end{align}\]

Thus, \[\frac{1}{2}\left( A-A' \right)\] is a skew-symmetric matrix.


11. If A,B are symmetric matrix of same order, then \[\mathrm{AB-BA}\] is a 

  1. Skew symmetric matrix

  2. Symmetric matrix 

  3. Zero matrix

  4. Identity matrix

Ans:

The correct answer is A

\[A\And B\] are symmetric , therefore , we have 

\[A'=A\And B'=B\]

Consider 

\[\begin{align} & \left( AB-BA \right)'=\left( AB \right)'-\left( BA \right)' \\ & =B'A'-A'B' \\ & =BA-AB \\ & =-\left( AB-BA \right) \\ & \therefore \left( AB-BA \right)'=-\left( AB-BA \right) \\ \end{align}\] Thus, \[\left( AB-BA \right)'\] is a skew-symmetric matrix


12. If\[\mathrm{A=}\left[ \begin{matrix} \mathrm{cos }\;\;\alpha\;\;\text{ } & \mathrm{-sin }\;\;\alpha\!\!\text{ } \\ \mathrm{sin }\;\;\alpha\;\;\text{ } & \mathrm{cos }\;\;\alpha\!\!\text{ } \\ \end{matrix} \right]\] , then \[\mathrm{A+A }\;\;'\;\;\text{ =I}\] , if the value of \[\mathrm{ }\;\;\alpha\!\!\text{ }\] is \[\begin{align} & \mathrm{A}\mathrm{.}\frac{\mathrm{ }\;\;\pi\;\;\text{ }}{\mathrm{6}} \\ & \mathrm{B}\mathrm{.}\frac{\mathrm{ }\;\;\pi\;\;\text{ }}{\mathrm{3}} \\ & \mathrm{C}\mathrm{. }\;\;\pi\!\!\text{ } \\ & \mathrm{D}\mathrm{.}\frac{\mathrm{3 }\;\;\pi\!\!\text{ }}{\mathrm{2}} \\ \end{align}\]

Ans:

The correct answer is B

 \[\begin{align} & A=\left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A'=\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right] \\ & A+A'=I \\ & \therefore \left[ \begin{matrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \end{matrix} \right]+\left[ \begin{matrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & \left[ \begin{matrix} 2\cos \alpha & 0 \\ 0 & 2\cos \alpha \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & \alpha =\frac{\pi }{3} \\ \end{align}\]


Conclusion

In conclusion, class 12 ex 3.3 has thoroughly explored the fundamental concepts of matrices, including various operations, types, properties, and their applications. This exercise is essential for understanding how matrices are used in solving linear equations and performing geometric transformations. Mastery of these concepts is crucial for students aiming to excel in advanced mathematics and related fields.


Class 12 Maths Chapter 3: Exercises Breakdown

S.No.

Chapter 3 - Matrices Exercises in PDF Format

1

Class 12 Maths Chapter 3 Exercise 3.1 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

2

Class 12 Maths Chapter 3 Exercise 3.2 - 22 Questions & Solutions (3 Short Answers, 19 Long Answers)

3

Class 12 Maths Chapter 3 Exercise 3.4 - 18 Questions & Solutions (18 Short Answers)

4

Class 12 Maths Chapter 3 Miscellaneous Exercise - 11 Questions & Solutions



Other Study Materials for CBSE Class 12 Maths Chapter 3 Matrices



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 3 Matrices Ex 3.3

1. What are the main concepts covered in NCERT Solutions for Class 12 Maths Chapter 3 Matrices Exercise 3.3?

  • Matrix transpose operations
  • Properties and identification of symmetric and skew-symmetric matrices
  • Verification of algebraic properties involving matrix addition, subtraction, and scalar multiplication
  • Application of CBSE 2025–26 syllabus rules for matrices

2. How do you verify if a matrix is symmetric or skew-symmetric as per NCERT Solutions for Class 12 Maths Chapter 3?

To verify symmetry, calculate the transpose and compare with the original. If A' = A, the matrix is symmetric. If A' = -A, it is skew-symmetric. These criteria are essential for CBSE exam pattern questions in Chapter 3.

3. Why is understanding matrix transpose important in Class 12 matrices questions?

  • Transpose is key for operations like identifying symmetry
  • Transpose properties are used in advanced maths, physics, and computer science applications
  • Understanding transpose is directly linked to solving CBSE pattern problems in Exercise 3.3

4. What stepwise approach does the NCERT Solutions for Exercise 3.3 recommend for solving matrix addition and subtraction questions?

  • Write both matrices in aligned order
  • Apply addition or subtraction element-wise
  • Verify results through direct calculation and by checking for properties (e.g., symmetry after operations)
  • Cross-check using solutions as per CBSE 2025–26 guidelines if necessary

5. How can you determine if a combination like (A–A’) results in a skew-symmetric matrix in Exercise 3.3?

Compute the transpose of (A–A’). If (A–A’)' = –(A–A’), the resultant matrix is skew-symmetric. This is a frequently applied property in Class 12 Maths NCERT exercises.

6. What unique rules must be followed when verifying that (AB)' = B'A' in CBSE Class 12 Matrices?

Always apply the transpose operator individually to each matrix in reverse multiplication order: (AB)' = B'A'. This principle appears in several Exercise 3.3 solutions and matches CBSE concept application requirements.

7. What are common student misconceptions regarding skew-symmetric matrices as per the NCERT Solutions for Class 12 Maths Chapter 3?

Many students incorrectly swap signs uniformly or confuse symmetry with skew-symmetry. Remember: In a skew-symmetric matrix, diagonal elements are always zero and A'=-A. Practice verifying these properties to avoid mistakes in board exams.

8. How do NCERT Solutions for Class 12 Maths Chapter 3 help in solving geometric transformation problems?

Matrices are used to represent geometric transformations (like rotation, reflection, scaling) in mathematics. Chapter 3 solutions explain these properties through stepwise examples, making the concepts easier to apply in real-world and CBSE application-based questions.

9. Can a matrix be both symmetric and skew-symmetric? Explain using NCERT Solutions logic.

A matrix that is both symmetric and skew-symmetric must satisfy A = A' and A = –A'. This is only possible if all elements are zero; thus, only the zero matrix meets both conditions, as covered in CBSE 2025–26 Chapter 3 explanations.

10. What is the significance of verifying properties like (A–B)' = A'–B' in Class 12 matrices solutions?

Verifying such properties demonstrates understanding of matrix operations as per NCERT and CBSE curriculum. These checks are crucial for full marks in structured board examination answers.

11. How does understanding matrices help in higher studies beyond Class 12, according to NCERT Solutions for Matrices?

Matrices form the foundation of linear algebra, which is critical in fields like engineering, physics, economics, and computer science. Mastery of NCERT Class 12 matrices makes advanced topics like determinants, vector spaces, and transformations more accessible in future studies.

12. Which CBSE exam questions from Chapter 3 Matrices often test skipped logic or hidden cases?

CBSE sometimes asks about properties under special conditions:

  • What if the matrix is rectangular instead of square?
  • How are symmetric/skew-symmetric conditions applied to non-square matrices? (Answer: Not defined)
  • CBSE also tests boundary cases, such as properties of the zero or identity matrix under transpose.

13. What are the three main types of matrices revisited in Class 12 Maths Chapter 3 Exercise 3.3?

  • Square matrix (rows = columns)
  • Diagonal matrix (nonzero elements only on the main diagonal)
  • Identity matrix (diagonal elements are 1, others zero)
Recognizing these types is essential for problem-solving in NCERT Solutions.

14. How does CBSE recommend expressing any matrix as a sum of symmetric and skew-symmetric matrices in Exercise 3.3?

Any square matrix A can be expressed as:
A = ½(A + A’) + ½(A – A’), where ½(A + A’) is symmetric and ½(A – A’) is skew-symmetric. This is a direct NCERT Solution step highlighted for CBSE exams.

15. What are the must-follow methods to score full marks in Class 12 Maths Chapter 3 NCERT Solutions according to the 2025–26 board pattern?

  • Show stepwise solutions with clear working
  • State properties/theorems before using them
  • Write final answers in correct matrix notation
  • Include units/justifications where relevant
  • Review NCERT Sample Paper trends for the latest marking scheme