Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Maths Chapter 1 Relations and Functions – NCERT Solutions 2025–26

ffImage
banner

Get the Class 12 Maths Relations and Functions Ex 1.2 Solutions PDF Instantly

The NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.2 Relation and Functions provides complete solutions to the problems in the Exercise. These NCERT Solutions are intended to assist students with the CBSE Class 10 board examination.

toc-symbolTable of Content
toggle-arrow


Students should thoroughly study this NCERT solution in order to solve all types of questions based on Relation and Functions. By completing these practice questions with the NCERT Maths Solutions Class 12 Chapter 1 Exercise 1.2, you will be better prepared to understand all of the different types of questions that may be asked in the class 12 maths ex 1.2 board exams.


Glance on NCERT Solutions Maths Chapter 1 Exercise 1.2 Class 12 | Vedantu

  • Chapter 1, Exercise 1.2 of Class 12 Maths textbook likely deals with advanced topics related to Relations and Functions, building on the concepts introduced earlier in the chapter.

  • Explore different types of relations beyond basic ones, like reflexive, symmetric, and transitive relations. Concepts like equivalence relations might be introduced.

  • The focus will shift towards different properties of functions. Solving problems to determine if a function is one-one (injective), onto (surjective), or both (bijective).

  • Composition of Functions involves problems where you combine two functions and analyze the resulting composite function.

  • Questions related to identifying the domain (input values) and range (output values) for functions and composite functions.

  • Class 12 ex 1.2 Maths NCERT Solutions has over all 12 Questions.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access PDF for Maths NCERT Chapter 1 Relation and Functions Exercise 1.2 Class 12

Exercise 1.2

1. Show that the function ${\text{f}}:{{\mathbf{R}}_*} \to {{\mathbf{R}}_*}$ defined by ${\text{f(}}x) = \dfrac{1}{x}$ is one-one and onto, where ${{\mathbf{R}}_*}$ is the set of all non-zero real numbers. Is the result true, if the domain ${{\mathbf{R}}_*}$ is replaced by ${\text{N}}$ with co-domain being same as ${{\mathbf{R}}_*}$?

Ans:  Given that, f: ${{\text{R}}^*} \to {R_*}$ is defined by ${\text{f}}(x) = \dfrac{1}{x}$.

Consider $x,\,\,y \in R*$ such that ${\text{f}}(x) = {\text{f}}(y)$

$ \Rightarrow \dfrac{1}{x} = \dfrac{1}{y}$

$ \Rightarrow x = y$

Thus, ${\text{f}}$ is one-one.

It is clear that for $y \in R*$, there exists $x = \dfrac{1}{y} \in R*[$ as $y \ne 0]$ such that

${\text{f}}(x) = \dfrac{1}{{\left( {\dfrac{1}{y}} \right)}} = {\text{y}}$

Thus, ${\text{f}}$ is onto.

Therefore, the given function ${\text{f}}$ is one-one and onto.

Now, consider function ${\text{g}}:{\text{N}} \to {{\text{R}}_*}$ defined by ${\text{g}}(x) = \dfrac{1}{x}$

We have, $g\left( {{x_1}} \right) = g\left( {{x_2}} \right)\quad  \Rightarrow \, = \dfrac{1}{{{x_1}}} = \dfrac{1}{{{x_2}}}$

$ \Rightarrow {x_1} = {x_2}$

Thus, \[{\text{g}}\] is one-one.

It is clear that ${\text{g}}$ is not onto as for $1.2 \in  = {{\text{R}}_*}$, there does not exist any $x$ in ${\text{N}}$ such that 

${\text{g}}(x)$ $ = \dfrac{1}{{1.2}}$

Therefore, the function ${\text{g}}$ is one-one but not onto.


2. Check the injectivity and surjectivity of the following functions:

(i) ${\text{f}}:{\text{N}} \to {\text{N}}$ given by ${\text{f}}(x) = {x^2}$

Ans: Here, ${\text{f}}\,{\text{:}}\,{\text{N}} \to {\text{N}}$ is given by ${\text{f}}(x) = {x^2}$

For $x,y \in N,\,\,$

${\text{f}}(x) = {\text{f}}(y) \Rightarrow {x^2} = {y^2} \Rightarrow x = y$

Thus, ${\text{f}}$ is injective.

Now, $2 \in {\text{N}}$. But, there does not exist any $x$ in ${\text{N}}$ such that ${\text{f}}(x) = {x^2} = 2$

Thus, ${\text{f}}$ is not surjective.

Therefore, the function ${\text{f}}$ is injective but not surjective.


(ii) ${\text{f}}:{\text{Z}} \to {\text{Z}}$ given by ${\text{f}}(x) = {x^2}$

Ans: Here, ${\text{f}}:{\text{Z}} \to {\text{Z}}$ is given by ${\text{f}}(x) = {x^2}$

It is seen that ${\text{f}}( - 1) = {\text{f}}(1) = 1$, but $ - 1 \ne 1$.

Thus, ${\text{f}}$ is not injective.

Now, $ - 2 \in {\text{Z}}$. But, there does not exist any element ${\text{x}} \in {\text{Z}}$ such that

$f(x) =  - 2$ or ${x^2} =  - 2$

Thus, ${\text{f}}$ is not surjective.

Therefore, the function ${\text{f}}$ is neither injective nor surjective.


(iii) f: ${\text{R}} \to {\text{R}}$ is given by ${\text{f}}(x) = {x^2}$

Ans: Here, f: ${\text{R}} \to {\text{R}}$ is given by ${\text{f}}(x) = {x^2}$

It is seen that ${\text{f}}( - 1) = {\text{f}}(1) = 1$, but $ - 1 \ne 1$.

Thus, ${\text{f}}$ is not injective.

Now, $ - 2 \in {\text{R}}$. But, there does not exist any element $x \in {\text{R}}$ such that ${\text{f}}(x) =  - 2$

or ${x^2} =  - 2$.

Thus, ${\text{f}}$ is not surjective.

Therefore, the function ${\text{f}}$ is neither injective nor surjective.


(iv) ${\text{f}}:{\text{N}} \to {\text{N}}$ given by ${\text{f}}(x) = {x^3}$

Ans: Here, ${\text{f}}:{\text{N}} \to {\text{N}}$ given by ${\text{f}}(x) = {x^3}$

For $x,y \in N,$

$f(x) = f(y) \Rightarrow {x^3} = {y^3} \Rightarrow x = y$

Thus, ${\text{f}}$ is injective.

Now, $2 \in {\text{N}}$. But, there does not exist any element $x \in {\text{N}}$ such that

$f(x) = 2$ or ${x^3} = 2$

Thus, ${\text{f}}$ is not surjective

Therefore, function ${\text{f}}$ is injective but not surjective.


(v) ${\text{f}}\,{\text{:}}\,{\text{Z}} \to {\text{Z}}$ is given by $f(x) = {x^3}$

Ans: Here, ${\text{f}}\,{\text{:}}\,{\text{Z}} \to {\text{Z}}$ is given by $f(x) = {x^3}$

For $x,y \in {\text{Z}},$

${\text{f}}(x) = {\text{f}}(y) \Rightarrow {x^3} = {y^3} \Rightarrow x = y$

Thus, ${\text{f}}$ is injective.

Now, $2 \in {\text{Z}}$. But, there does not exist any element $x \in {\text{Z}}$ such that

${\text{f}}(x) = 2$ or ${x^3} = 2$

Thus, ${\text{f}}$ is not surjective.

Therefore, the function ${\text{f}}$ is injective hut not surjective.


3. Prove that the Greatest Integer Function ${\text{f}}:{\text{R}} \to {\text{R}}$ given by ${\text{f}}(x) = [x]$, is neither one

one nor onto, where \[[x]\]denotes the greatest integer less than or equal to $x$.

Ans: Here, ${\text{f}}:{\text{R}} \to {\text{R}}$ is given by, ${\text{f}}(x) = [x]$

It is seen that ${\text{f}}(1.2) = [1.2] = 1,{\text{f}}(1.9) = [1.9] = 1$.

Then, ${\text{f}}(1.2) = {\text{f}}(1.9)$, but $1.2 \ne 1.9$

Thus, ${\text{f}}$ is not one-one.

Consider $0.7 \in {\text{R}}$

It is known that ${\text{f}}(x) = [x]$ is always an integer. 

Thus, there does not exist any element $x \in {\text{R}}$ such that ${\text{f}}(x) = 0.7$

Therefore, ${\text{f}}$ is not onto.

Hence, the greatest integer function is neither one-one nor onto.


4. Show that the Modulus Function ${\text{f}}:{\text{R}} \to {\text{R}}$ given by ${\text{f}}(x) = |x|$, is neither one-one nor 

onto, where \[|x|\] is $x$, if ${\text{x}}$ is positive or 0 and $|x|$ is $ - x$, if $x$ is negative.

Ans: Here, ${\text{f}}:{\text{R}} \to {\text{R}}$ is given by \[{\text{f}}(x) = |x| = \left\{ {\begin{array}{*{20}{l}} x&{{\text{ if }}x \geqslant 0} \\ { - x}&{{\text{ if }}x < 0} \end{array}} \right.\]

It is clear that ${\text{f}}( - 1) = | - 1| = 1$ and ${\text{f}}(1) = |1| = 1$

Now, ${\text{f}}( - 1) = {\text{f}}(1)$, but $ - 1 \ne 1$

Thus, ${\text{f}}$ is not one-one.

Now, consider $ - 1 \in {\text{R}}$.

It is known that ${\text{f}}(x) = |x|$ is always non-negative. 

Thus, there does not exist any element $x$ in domain ${\text{R}}$ such that ${\text{f}}(x) = |x| =  - 1$

Thus, ${\text{f}}$ is not onto.

Therefore, the modulus function is neither one-one nor onto.


5. Show that the Signum Function f: ${\text{R}} \to {\text{R}}$, given by ${\text{f}}(x) = \left\{ {\begin{array}{*{20}{l}} 1&{{\text{ if }}x > 0} \\ {0,}&{{\text{ if }}x = 0} \\ { - 1,}&{{\text{ if }}x < 0} \end{array}} \right.$

is neither one-one nor onto.

Ans: Here, f: ${\text{R}} \to {\text{R}}$, given by ${\text{f}}(x) = \left\{ {\begin{array}{*{20}{l}} 1&{{\text{ if }}x > 0} \\ {0,}&{{\text{ if }}x = 0} \\ { - 1,}&{{\text{ if }}x < 0} \end{array}} \right.$

It is seen that ${\text{f}}(1) = {\text{f}}(2) = 1$, but $1 \ne 2$.

Thus, ${\text{f}}$ is not one-one.

Now, as ${\text{f}}(x)$ takes only \[3\] values $(1,\,\,0$, or $ - 1)$ for the element $ - 2$ in co-domain

${\text{R}}$, there does not exist any $x$ in domain ${\text{R}}$ such that ${\text{f}}(x) =  - 2$.

Thus, ${\text{f}}$ is not onto

Therefore, the Signum function is neither one-one nor onto.


6. Let ${\text{A}} = \{ 1,2,3\} ,\,\,{\text{B}} = \{ 4,5,6,7\} $ and let ${\text{f}} = \{ (1,4),\,\,(2,5),\,\,(3,6)\} $ be a function from ${\text{A}}$ to ${\text{B}}$. 

Show that ${\text{f}}$ is one-one.

Ans: Given that, ${\text{A}} = \{ 1,2,3\} $

${\text{B}} = \{ 4,5,6,7\} $

${\text{f}}\,{\text{:}}\,{\text{A}} \to {\text{B}}$ is defined as ${\text{f}} = \{ (1,4),\,\,(2,5),\,\,(3,6)\} $

Thus, ${\text{f}}(1) = 4,\,\,{\text{f}}(2) = 5,\,\,{\text{f}}(3) = 6$

It is seen that the images of distinct elements of ${\text{A}}$ under ${\text{f}}$ are distinct.

Therefore, the function ${\text{f}}$ is one-one.


7. In each of the following cases, state whether the function is one-one,

onto or bijective. Justify your answer.

(i) ${\text{f}}\,{\text{:}}\,{\text{R}} \to {\text{R}}$ defined by ${\text{f}}(x) = 3 - 4x$

Ans: Here, f: ${\text{R}} \to {\text{R}}$ is defined as ${\text{f}}(x) = 3 - 4x$.

Let ${x_1},\,\,{x_2} \in {\text{R}}$ such that ${\text{f}}\left( {{x_1}} \right) = {\text{f}}\left( {{x_2}} \right)$

$ \Rightarrow 3 - 4{x_1} = 3 - 4{x_2}$

$ \Rightarrow  - 4{x_1} =  - 4{x_2}$

$ \Rightarrow {x_1} = {x_2}$

Thus, ${\text{f}}$ is one-one.

For any real number \[\left( y \right)\] in ${\text{R}}$ such that ${\text{f}}\left( {\dfrac{{3 - y}}{4}} \right) = 3 - 4\left( {\dfrac{{3 - y}}{4}} \right) = y$

Thus, ${\text{f}}$ is onto.

Therefore, the function ${\text{f}}$ is bijective.


(ii) ${\text{f}}\,{\text{:}}\,{\text{R}} \to {\text{R}}$ is defined as ${\text{f}}(x) = 1 + {x^2}$

Ans: Here, ${\text{f}}:{\text{R}} \to {\text{R}}$ defined by ${\text{f}}(x) = 1 + {x^2}$

Let ${x_1},\,\,{x_2} \in {\text{R}}$ such that ${\text{f}}({x_1}) = {\text{f}}\left( {{x_2}} \right)$

$ \Rightarrow 1 + {({x_1})^2} = 1 + {({x_2})^2}$

$ \Rightarrow {({x_1})^2} = {({x_2})^2}$

$ \Rightarrow {x_1} = {x_2}$

Thus, ${\text{f}}\left( {{x_1}} \right) = {\text{f}}\left( {{x_2}} \right)$ does not imply that ${x_1} = {x_2}$.

For example, ${\text{f}}(1) = {\text{f}}( - 1) = 2$

Therefore, ${\text{f}}$ is not one-one.

Consider an element $ - 2$ in co-domain ${\text{R}}$.

It is seen that ${\text{f}}(x) = 1 + {x^2}$ is positive for all ${\text{x}} \in {\text{R}}$.

Thus, there does not exist any $x$ in domain ${\text{R}}$ such that ${\text{f}}(x) =  - 2$.

Therefore, ${\text{f}}$ is not onto.

Hence, the function ${\text{f}}$ is neither one-one nor onto.


8. Let ${\text{A}}$ and ${\text{B}}$ be sets. Show that ${\text{f}}:{\text{A}} \times {\text{B}} \to {\text{B}} \times {\text{A}}$ such that $(a,b) = (b,a)$ is

bijective function.

Ans: ${\text{f}}\,{\text{:}}\,{\text{A}} \times {\text{B}} \to {\text{B}} \times {\text{A}}$ is defined as ${\text{f}}(a,b) = (b,a)$

Let $\left( {{a_1},{b_1}} \right),\,\,\left( {{a_2},{b_2}} \right) \in {\text{A \times B}}$ such that ${\text{f}}\left( {{a_1},{b_1}} \right) = {\text{f}}\left( {{a_2},{b_2}} \right)$

$ \Rightarrow \left( {{b_1},{a_1}} \right) = \left( {{b_2},{a_2}} \right)$

$ \Rightarrow {b_1} = {b_2}$ and \[{a_1} = {a_2}\]

$ \Rightarrow \left( {{a_1},\;{b_1}} \right) = \left( {{a_2},\;{b_2}} \right)$

Thus, ${\text{f}}$ is one-one.

Now, let $(b,a) \in {\text{B A}}$ be any element.

Then, there exists $(a,b) \in {\text{A B}}$ such that $f(a, b)=(b, a) .[$By definition of \[{\text{f}}]\]

Thus, ${\text{f}}$ is onto.

Therefore, the function ${\text{f}}$ is bijective.


9. Let f: ${\text{N}} \to {\text{N}}$ be defined by ${\text{f}}(n) = \left\{ {\begin{array}{*{20}{l}} {\dfrac{{n + 1}}{2},}&{{\text{ if }}n{\text{ is odd }}} \\ {\dfrac{n}{2},}&{{\text{ if }}n{\text{ is even }}} \end{array}} \right.$ for all $n \in {\text{N}}$

State whether the function ${\text{f}}$ is bijective. Justify your answer.

Ans: ${\text{f}}:{\text{N}} \to {\text{N}}$ is defined as ${\text{f}}(n) = \left\{ {\begin{array}{*{20}{l}} {\dfrac{{n + 1}}{2},}&{{\text{ if }}n\,\,{\text{is}}\,{\text{odd }}} \\ {\dfrac{n}{2},}&{{\text{ if }}n{\text{ is even }}} \end{array}} \right.$ for all $n \in {\text{N}}$

It can be observed that

$f(1) = \dfrac{{1 + 1}}{2} = 1$ and $f(2) = \dfrac{2}{2} = 1$   (By definition of ${\text{f}}(n)$)

$f(1) = f(2)$, where $1 \ne 2$

Thus, ${\text{f}}$ is not one-one.

Consider a natural number \[\left( n \right)\] in co-domain \[{\text{N}}.\]

Case 1: $n$ is odd

Thus, $n = 2{\text{r}} + 1$ for some $r \in {\text{N}}$. Then, there exists $4r + 1 \in {\text{N}}$ such that

$f(4r + 1) = \dfrac{{4r + 1 + 1}}{2} = 2r + 1$

Case 2: $n$ is even

Thus, $n = 2r$ for some $r \in {\text{N}}$. Then, there exists $4r \in {\text{N}}$ such that

${\text{f}}(4r) = \dfrac{{4r}}{2} = 2r$

Therefore, ${\text{f}}$ is onto.

Hence, the function \[{\text{f}}\]is not a bijective function.


10. Let ${\text{A}} = {\text{R}} - \{ 3\} $ and ${\text{B}} = {\text{R}} - \{ 1\} .$ Consider the function f: ${\text{A}} \to {\text{B}}$ defined by ${\text{f}}(x)$ 

$ = \left( {\dfrac{{x - 2}}{{x - 3}}} \right).$ Is f one-one and onto? Justify your answer.

Ans: ${\text{A}} = {\text{R}} - \{ 3\} ,{\text{B}} = {\text{R}} - \{ 1\} $ and ${\text{f}}:{\text{A}} \to {\text{B}}$ defined by ${\text{f}}(x) = \left( {\dfrac{{x - 2}}{{x - 3}}} \right)$

Let $x,y \in $ A such that $f(x) = f(y)$

$ \Rightarrow \dfrac{{x - 2}}{{x - 3}} = \dfrac{{y - 2}}{{y - 3}}$

By cross multiplication,

$ \Rightarrow (x - 2)(y - 3) = (y - 2)(x - 3)$

Expand brackets,

$ \Rightarrow xy - 3x - 2y + 6 = xy - 2x - 3y + 6$

$ \Rightarrow  - 3x - 2y =  - 2x - 3y \Rightarrow x = y$

Thus, ${\text{f}}$ is one-one.

Let $y \in {\text{B}} = {\text{R}} - \{ 1\} .$ Then, $y \ne 1$.

The function ${\text{f}}$ is onto if there exists $x \in {\text{A}}$ such that ${\text{f}}(x) = y$.

Now, $f(x) = y$

$ \Rightarrow \dfrac{{x - 2}}{{y - 3}} = y$

By cross multiplication,

$ \Rightarrow x - 2 = xy - 3y \Rightarrow x(1 - y) =  - 3y + 2$

$ \Rightarrow x = \dfrac{{2 - 3y}}{{1 - y}} \in {\text{A}}$

$[y \ne 1]$

Thus, for any $y \in {\text{B}}$, there exists $\dfrac{{2 - 3y}}{{1 - y}} \in {\text{A}}$ such that

${\text{f}}\left( {\dfrac{{2 - 3y}}{{1 - y}}} \right) = \dfrac{{\left( {\dfrac{{2 - 3y}}{{1 - y}}} \right) - 2}}{{\left( {\dfrac{{2 - 3y}}{{1 - y}}} \right) - 3}}$

Take LCM,

$ = \dfrac{{2 - 3y - 2 + 2y}}{{2 - 3y - 3 + 3y}}$

$ = \dfrac{{ - y}}{{ - 1}} = y$

Thus, ${\text{f}}$ is onto.

Therefore, the function ${\text{f}}$ is one-one and onto.


11. Let ${\text{f}}:{\mathbf{R}} \to {\mathbf{R}}$ be defined as ${\text{f}}(x) = {x^4}$. Choose the correct answer.

(A) ${\text{f}}$ is one-one onto

(B) ${\text{f}}$ is many-one onto

(C) ${\text{f}}$ is one-one but not onto

(D) ${\text{f}}$ is neither one-one nor onto

Ans: Here, ${\text{f}}:{\mathbf{R}} \to {\mathbf{R}}$ is defined as ${\text{f}}(x) = {x^4}$.

Let $x,y \in R$ such that ${\text{f}}(x) = {\text{f}}(y)$.

$ \Rightarrow {x^4} = {y^4}$

$ \Rightarrow x =  \pm y$

${\text{f}}(x) = {\text{f}}(y)$ does not imply that $x = y$

For example, ${\text{f}}(1) = {\text{f}}( - 1) = 1$

Thus, ${\text{f}}$ is not one-one.

Consider an element \[2\] in co-domain ${\mathbf{R}}$. It is clear that there does not exist any $x$ in 

domain ${\text{R}}$ such that ${\text{f}}(x) = 2$

Thus, ${\text{f}}$ is not onto.

Hence, the function ${\text{f}}$ is neither one-one nor onto.

The correct answer is \[{\text{D}}.\]


12. Let ${\text{f}}\,{\text{:}}\,{\text{R}} \to {\text{R}}$ be defined as ${\text{f}}(x) = 3x$. Choose the correct answer.

(A) f is one – one and onto 

(B) f is many – one and onto 

(C) f is one – one but not onto 

(D) f is neither one – one nor onto

Ans: Here, ${\text{f}}:{\text{R}} \to {\text{R}}$ is defined as ${\text{f}}(x) = 3x$.

Let $x,\,\,y \in {\text{R}}$ such that ${\text{f}}(x) = {\text{f}}(y)$.

$ \Rightarrow 3x = 3y$

$ \Rightarrow x = y$

Thus, ${\text{f}}$ is one-one.

Now, for any real number \[\left( y \right)\] in co-domain ${\text{R}}$, there exists \[\dfrac{y}{3}\] in ${\text{R}}$ such that ${\text{f}}\left( {\dfrac{y}{3}} \right) = 3\left( {\dfrac{y}{3}} \right) = y$

Thus, ${\text{f}}$ is onto.

Hence, the function ${\text{f}}$ is one-one and onto.

Therefore, the correct answer is \[{\text{A}}.\]


Conclusion

Class 12 Exercise 1.2 of Maths Chapter 1 - Relation and Functions, is crucial for a solid foundation in math. Understanding the concept of the fundamental principles of relations and functions. Where students gain a deeper understanding of functions, a special type of relation where each input (domain element) has a unique output (range element). Regular practice of class 12 maths chapter 1 exercise 1.2 solutions NCERT solutions provided by  Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward.


NCERT Solutions for Class 12 Maths Chapter 1 Exercises

S.No.

Chapter 1 Relations and Functions All Exercises in PDF Format

1

Class 12 Maths Chapter 1 Exercise 1.1 - 16 Questions & Solutions (3 Short Answers, 13 Long Answers)

2

Class 12 Maths Chapter 1 Miscellaneous Exercise - 7 Questions & Solutions



CBSE Class 12 Maths Chapter 1 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Maths Chapter 1 Relations and Functions – NCERT Solutions 2025–26

1. How do NCERT Solutions for Class 12 Maths Chapter 1 help students understand the properties of relations and functions according to CBSE 2025–26 guidelines?

NCERT Solutions for Class 12 Maths Chapter 1 provide step-by-step explanations following CBSE 2025–26 methodology, ensuring students grasp critical properties like reflexivity, symmetry, transitivity, equivalence, and the difference between relations and functions. The structured answers help in clarifying doubts, avoiding common mistakes, and enable application of these concepts in board exams accurately.

2. What is the correct way to determine if a function is injective (one-one) and surjective (onto) in NCERT Class 12 Maths Chapter 1 problems?

The correct approach is to follow systematic steps:

  • For injectivity: Assume f(x1) = f(x2) and show it leads to x1 = x2.
  • For surjectivity: For every element y in the codomain, find an x in the domain such that f(x) = y.
All NCERT solutions as per CBSE 2025–26 require these stepwise logical checks to validate the nature of the function.

3. What are the common errors students make when solving function types (one-one, onto, bijective) questions, and how do NCERT Solutions address these?

Common errors include confusing the definitions of one-one and onto, ignoring restrictions on the domain or codomain, and skipping logical steps in proofs. NCERT Solutions guide students with structured justifications, ensuring each condition (like domain restrictions) is checked specifically for the given function, as expected in CBSE assessments.

4. How does the composition of functions feature in NCERT Solutions for Relations and Functions, and why is it important for board exams?

Composition of functions is explained through example-driven questions where two functions are combined, and students are required to analyze the resulting function’s properties. Mastering this is crucial as it is regularly tested in CBSE board papers and demonstrates a deeper grasp of functional operations.

5. Why is it necessary to pay attention to domain and range while solving NCERT Solutions in this chapter?

The correct identification of domain and range is fundamental to validating function properties. Many NCERT Solutions highlight that if domain or codomain restrictions are ignored, answers may be incorrect as per CBSE marking scheme. This step is especially significant when the function's definition changes based on sets like ℝ, ℤ, ℕ, etc.

6. How does practicing NCERT Solutions improve problem-solving skills for Class 12 Maths Chapter 1?

Practicing stepwise NCERT Solutions helps students develop systematic thinking, understand how to construct mathematical arguments, and identify and correct misconceptions—skills directly assessed in board examinations. It also familiarizes students with the format and rigor expected by CBSE 2025–26.

7. In NCERT Class 12 Maths Chapter 1, how are special functions like signum or modulus handled in solution steps, and what conceptual pitfalls should be avoided?

NCERT Solutions treat special functions by defining each case explicitly (e.g., for modulus: f(x) = |x|, for signum: f(x) = sign(x)). The key pitfall to avoid is assuming such functions are always one-one or onto; solutions emphasize checking their behavior over prescribed domains and codomains, aligning answers with NCERT/CBSE requirements.

8. What should students focus on while writing stepwise solutions in CBSE board exams for Relations and Functions?

Students must clearly state definitions, provide logical reasoning for each step, address every part of the question (like specifying domains/codomains), and use CBSE terminology such as ‘injective’, ‘surjective’, and ‘bijective’. Conciseness and clarity are valued as per Class 12 Maths marking schemes.

9. How can the reasoning techniques learned from NCERT Solutions be applied to higher-level mathematics or competitive exams?

The stepwise problem-solving and justification methods taught in NCERT Solutions form the foundation for higher mathematics. They help students develop rigorous reasoning and proof-writing abilities essential for success in competitive exams and university-level mathematics.

10. What advantages do official NCERT Solutions offer over other solution sources for Chapter 1 of Class 12 Maths?

Official NCERT Solutions strictly follow the CBSE 2025–26 syllabus and marking guidelines, guarantee correctness of method and answer, and use terminology mirroring board expectations. This ensures students are best prepared for both conceptual questions and formal answer presentation required by CBSE examinations.