Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.4 - 2025-26

ffImage
banner

Trigonometric Functions Class 11 Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 3 Exercise 3 4, you'll explore the world of trigonometric equations and learn how to find both principal and general solutions for different types of problems. If you often get stuck on where to begin, these step-by-step solutions will guide you through every question with clear and simple explanations.


This chapter is perfect for building your skills in solving equations involving sine, cosine, tangent, and more—topics that can seem tricky at first. With Vedantu’s expert solutions, you won’t just solve for x, but also understand why each step works. You can easily download the detailed PDF for offline revision, making last-minute prep a breeze.


If you want to keep track of the full syllabus or need help with other chapters, don’t forget to check out the Class 11 Maths syllabus. Practising NCERT Solutions from this chapter will make you much more confident for the exam and help you master one of the most important topics in Class 11 Mathematics.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 11 Maths Chapter 3 - Trigonometric Functions

Exercise 3.4

1. Find the principal and general solutions of the $\text{tan x=}\sqrt{\text{3}}$.

Ans: Here given that,

$\text{tan x=}\sqrt{\text{3}}$

We know that $\text{tan}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{=}\sqrt{\text{3}}$

and $\text{tan}\left( \frac{\text{4 }\!\!\pi\!\!\text{ }}{\text{3}} \right)\text{=tan}\left( \text{ }\!\!\pi\!\!\text{ +}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}} \right)\text{=tan}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{=}\sqrt{\text{3}}$

Therefore, the principal solutions are$\text{x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ and $\frac{\text{4 }\!\!\pi\!\!\text{ }}{\text{3}}$ .

Now, $\text{tan x=tan}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$

Which implies,

$\text{x=n }\!\!\pi\!\!\text{ +}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ , where $\text{n}\in \text{Z}$

Therefore, the general solution is $\text{x=n }\!\!\pi\!\!\text{ +}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$, where $\text{n}\in \text{Z}$.

2. Find the principal and general solutions of the equation $\text{secx=2}$

Ans: Here it is given that,

$\text{sec x=2}$

Now we know that

$\text{sec}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{=2}$ and 

$\text{sec}\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{3}}\text{=sec}\left( \text{2 }\!\!\pi\!\!\text{ -}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}} \right)$

$\text{=sec}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$

$\text{=2}$ 

Therefore, the principal solutions are$\text{x=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ and $\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{3}}$.

Now, $\text{sec x=sec}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$

and we know , 

$\sec x=\frac{1}{\cos  x}$

Therefore , we have,

$\text{cos x=cos}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$

Which implies,

$\text{x=2n }\!\!\pi\!\!\text{  }\!\!\pm\!\!\text{ }\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ , where $\text{n}\in \text{Z}$ .

Therefore, the general solution is $\text{x=2n }\!\!\pi\!\!\text{  }\!\!\pm\!\!\text{ }\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ , where $n\in Z$.

3. Find the principal and general solutions of the equation $\text{cot x=-}\sqrt{\text{3}}$

Ans: Here it is given that,

$\text{cot x=-}\sqrt{\text{3}}$

Now we know that $\text{cot}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{=}\sqrt{\text{3}}$

And 

$\text{cot}\left( \text{ }\!\!\pi\!\!\text{ -}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)\text{=-cot}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$

$\text{=-}\sqrt{\text{3}}$

and  $\text{cot}\left( \text{2 }\!\!\pi\!\!\text{ -}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)\text{=-cot}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$

$\text{=-}\sqrt{\text{3}}$

Therefore we have,

$\text{cot}\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}\text{=-}\sqrt{\text{3}}$ 

and $\text{cot}\frac{\text{11 }\!\!\pi\!\!\text{ }}{\text{6}}\text{=-}\sqrt{\text{3}}$

Therefore, the principal solutions are $\text{x=}\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}$ and $\frac{\text{11 }\!\!\pi\!\!\text{ }}{\text{6}}$.

Now, $\text{cot x=cot}\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}$

And we know $\text{cot x=}\frac{\text{1}}{\text{tan x}}$

Therefore we have,

$\text{tan x=tan}\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}$

Which implies,

$\text{x=n }\!\!\pi\!\!\text{ +}\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}$ , where $\text{n}\in \text{Z}$

Therefore, the general solution is $\text{x=n }\!\!\pi\!\!\text{ +}\frac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}$ , where $\text{n}\in \text{Z}$.

4. Find the general solution of $\text{cosec x=-2}$

Ans: Here it is given that,

$\text{cosec x=-2}$

Now we know that

$\text{cosec}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{=2}$

and

$\text{cosec}\left( \text{ }\!\!\pi\!\!\text{ +}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)\text{=-cosec}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{a}$ 

$\text{=-2}$

and $\text{cosec}\left( \text{2 }\!\!\pi\!\!\text{ -}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)\text{=-cosec}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$

$\text{=-2}$

therefore we have,

$\text{cosec}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\text{=-2}$and $\text{cosec}\frac{\text{11 }\!\!\pi\!\!\text{ }}{\text{6}}\text{=-2}$

Hence , the principal solutions are$\text{x=}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\,$ and $\text{ }\frac{11\pi }{6}$.

Now, $\text{cosec x=cosec}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$

And we know, $\text{cosec x=}\frac{\text{1}}{\text{sin x}}$

Therefore , we have,

$\text{sin x=sin}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$

Which implies,

$\text{x=n }\!\!\pi\!\!\text{ +}{{\left( \text{-1} \right)}^{\text{n}}}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$  

,where $\text{n}\in \text{Z}$.

Therefore, the general solution is $\text{x=n }\!\!\pi\!\!\text{ +}{{\left( \text{-1} \right)}^{\text{n}}}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\text{ }$ ,where $\text{n}\in \text{Z}$.

5. Find the general solution of the equation $\text{cos 4x=cos 2x}$

Ans: Here it is given that, $\text{cos 4x=cos 2x}$

Which implies,

$\text{cos 4x-cos 2x=0}$

Now we know that, $\text{cos A-cos B=-2sin}\left( \frac{\text{A+B}}{\text{2}} \right)\text{sin}\left( \frac{\text{A-B}}{\text{2}} \right)$ 

Therefore we have,

$\text{-2sin}\left( \frac{\text{4x+2x}}{\text{2}} \right)\text{sin}\left( \frac{\text{4x-2x}}{\text{2}} \right)\text{=0}$

$\text{sin 3x sin x=0}$

Hence we have, $\text{sin 3x=0}\,\,$

Or, $\text{ sin x=0}$

Therefore, $\text{3x=n }\!\!\pi\!\!\text{ }$

 Or $\text{x=n }\!\!\pi\!\!\text{ }$    ,where $\text{ n}\in \text{Z}$

 therefore, $\text{x=}\frac{\text{n }\!\!\pi\!\!\text{ }}{\text{3}}$     

 Or $\text{x=n }\!\!\pi\!\!\text{ }$  ,where $\text{ n}\in \text{Z}$.

6. Find the general solution of the equation $\text{cos 3x+cos x-cos 2x=0}$.

Ans: Here given that,

$\text{cos 3x+cos x-cos 2x=0}$

Now we know that, $\text{cos A+cos B=2cos}\left( \frac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \frac{\text{A-B}}{\text{2}} \right)$

Therefore  $\text{cos 3x+cos x-cos 2x=0}$ implies

$\text{2cos}\left( \frac{\text{3x+x}}{\text{2}} \right)\text{cos}\left( \frac{\text{3x-x}}{\text{2}} \right)\text{-cos 2x=0}$

$\text{2cos 2x cos x-cos 2x=0}$

$\text{cos 2x}\left( \text{2cos x-1} \right)\text{=0}$

Hence we have, 

Either $\text{cos 2x=0}$

Or $\text{cos x=}\frac{\text{1}}{\text{2}}$ 

Which in turn implies that,

Either $\text{2x=}\left( \text{2n+1} \right)\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\,$

Or,  $\text{cos x=cos}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$    , where  $\text{n}\in \text{Z}$

Therefore, 

Either $\text{x=}\left( \text{2n+1} \right)\frac{\text{ }\!\!\pi\!\!\text{ }}{4}\,\,$

Or, $\text{x=2n }\!\!\pi\!\!\text{  }\!\!\pm\!\!\text{ }\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$  ,where  $\text{n}\in \text{Z}$.

7. Find the general solution of the equation $\text{sin 2x+cos x=0}$ .

Ans: Here it is given that,

$\text{sin 2x cos x=0}$

Now we know that, $\text{sin 2x=2sin x cos x}$ 

Therefore we have,

$\text{2sin x cos x+cos x=0}$

Which implies,

$\text{cos x(2sin x+1)= }\!\!~\!\!\text{ 0}$

Therefore we have,

Either $\text{cos x=0}$ 

Or, $\text{sin x=-}\frac{\text{1}}{\text{2}}$  

Hence we have,

Either  $\text{x= }\!\!~\!\!\text{ (2n+1)}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$   , where $\text{n}\in \text{Z}$ .

Or,  $\text{sin x=-}\frac{\text{1}}{\text{2}}$

$\text{=-sin}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$ 

$\text{=sin}\left( \text{ }\!\!\pi\!\!\text{ -}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}} \right)$ 

$\text{=sin}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$ 

Which implies

$\text{x=n }\!\!\pi\!\!\text{ +}{{\left( \text{-1} \right)}^{\text{n}}}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$  , where  $\text{n}\in \text{Z}$

Therefore, the general solution is $\left( \text{2n+1} \right)\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\,$ or  $\text{n }\!\!\pi\!\!\text{ +}{{\left( \text{-1} \right)}^{\text{n}}}\frac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}\text{,n}\in \text{Z}$.

8. Find the general solution of the equation $\text{se}{{\text{c}}^{\text{2}}}\text{2x=1-tan 2x}$

Ans:

Here given that , $\text{se}{{\text{c}}^{\text{2}}}\text{2x=1-tan 2x}$

Now we know that, $\text{se}{{\text{c}}^{\text{2}}}\text{x-ta}{{\text{n}}^{\text{2}}}\text{x=1}$ 

Therefore we have,

$\text{se}{{\text{c}}^{\text{2}}}\text{2x=1-tan 2x}$  implies

$\text{1+ta}{{\text{n}}^{\text{2}}}\text{2x=1-tan 2x}$

$\text{ta}{{\text{n}}^{\text{2}}}\text{2x+tan 2x=0}$

$\text{tan 2x(tan 2x+1)= }\!\!~\!\!\text{ 0}$

Hence  either $\text{tan 2x=0}$ 

Or, $\text{tan 2x=-1}$ 

Which implies  either  $\text{x=}\frac{\text{n }\!\!\pi\!\!\text{ }}{\text{2}}$  , where $\text{n}\in \text{Z}$ ,

Or, $\text{tan 2x=-1}$ 

$\text{=-tan}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}$

$\text{=tan}\left( \text{ }\!\!\pi\!\!\text{ -}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right)$

$\text{=tan}\frac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}$

Which in turn implies that,  

$\text{2x=n }\!\!\pi\!\!\text{ +}\frac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{,}$ where  $\text{n}\in \text{Z}$

i.e,  $\text{x=}\frac{\text{n }\!\!\pi\!\!\text{ }}{\text{2}}\text{+}\frac{\text{3 }\!\!\pi\!\!\text{ }}{\text{8}}\text{,}$ where $\text{n}\in \text{Z}$.

Therefore, the general solution is $\frac{\text{n }\!\!\pi\!\!\text{ }}{\text{2}}\,\,$ or  $\,\,\frac{\text{n }\!\!\pi\!\!\text{ }}{\text{2}}\text{+}\frac{\text{3 }\!\!\pi\!\!\text{ }}{\text{8}}\text{,n}\in \text{Z}$.

9. Find the general solution of the equation $\text{sin x+sin 3x+sin 5x=0}$

Ans:

Here given that ,$\text{sin x+sin 3x+sin 5x=0}$

Now we know that,  $\text{sin A+sin B=2sin}\left( \frac{\text{A+B}}{\text{2}} \right)\text{cos}\left( \frac{\text{A-B}}{\text{2}} \right)$

Therefore ,

$\text{sin x+sin 3x+sin 5x=0}$

$\left( \text{sin x+sin 3x} \right)\text{+sin 5x=0}$ 

$\left[ \text{2sin}\left( \frac{\text{x+5x}}{\text{2}} \right)\text{cos}\left( \frac{\text{x-5x}}{\text{2}} \right) \right]\text{+sin 3x=0}\,$

$\text{2sin 3x cos (-2x)+sin 3x= }\!\!~\!\!\text{ 0}$

Simplifying we get,

$\text{2sin 3xcos 2x+sin 3x=0}$

$\text{sin 3x(2cos 2x+1)= }\!\!~\!\!\text{ 0}$

Hence either $\text{sin 3x=0}$ 

Or, $\text{cos 2x=-}\frac{\text{1}}{\text{2}}$ 

Which implies  $\text{3x=n }\!\!\pi\!\!\text{ }$ , where $\text{n}\in \text{Z}$ 

Or,   $\text{cos 2x=-}\frac{\text{1}}{\text{2}}$

$\text{=-cos}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}$ 

$\text{=cos}\left( \text{ }\!\!\pi\!\!\text{ -}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}} \right)$ 

$\text{=cos}\frac{\text{2 }\!\!\pi\!\!\text{ }}{\text{3}}$ 

i.e., either $\text{x=}\frac{\text{n }\!\!\pi\!\!\text{ }}{\text{3}}$   , where $\text{n}\in \text{Z}$ 

or,  $\text{2x=2n }\!\!\pi\!\!\text{  }\!\!\pm\!\!\text{ }\frac{\text{2 }\!\!\pi\!\!\text{ }}{\text{3}}$   ,where $\text{n}\in \text{Z}$ .

Therefore, the general solution is $\frac{\text{n }\!\!\pi\!\!\text{ }}{\text{3}}\,$ or $\text{n }\!\!\pi\!\!\text{  }\!\!\pm\!\!\text{ }\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{,n}\in \text{Z}$.

Introduction To Trigonometry

In this chapter, we are going to study various trigonometric functions like sin, cos, tan, sec, cosec and other different concepts used in Trigonometry, their relation with each other, measures of angle in different ways, principle solution, general solution, theorems related to real numbers x and y, their application and conversions and many more. 

  • Trigonometry is a branch of mathematics that gives the relation between side length and angle.

  • Trigonometry also means a measure of the angle.

  • Trigonometry, though it may sound boring, has a lot of applications in the modern world. 


Some of them are listed below:

  • Architecture: the designing of structures, require a lot of Trigonometric solutions 

  • Digital imaging: Trigonometric functions help in the detection of tumors, scanning 

  • Oceanography 

  • Satellite systems: the navigation study is done using Trigonometry 

  • Cartography which is basically the creation of maps uses these functions

  • Games: the development in the world of games owes its credits to Trigonometry. 

  • Aircraft design and navigation


Terms Used For Trigonometric Functions:

  • Trigonometry: measuring the sides of a triangle 

  • Angles: the rotational measure of a ray

  • Degree measure: if the rotation from the first side to the last side is (1/360th) of rotation, the angle now measures 1 degree or 1°

  • Radian measure: it is the measure of the angle subtended by an arc 

  • The relation between degree and radian: 

  • 2 pi radian = 360° and pi radian = 180°

  • Notational conversions

  • Radian measure =pie/180×degree measure

  • Degree measure = 180/pie ×radian measures

  • Signs of Trigonometric functions: depending on the Trigonometric functions and their positions in the quadrant, they may be + or - 

  • Trigonometric identities: the result of the sum or difference of two numbers and their related expressions.


Trigonometric Equations

Variables of an equation with Trigonometric functions are called Trigonometric equations. 


The solution of these equations is called principle solutions. If this equation involves integer n then its solution is called the general solution. 


Z is used to denote a set of integers. 


Points to remember before the exercise:

  • sin x =0 gives x = nπ, where n ∈ Z

  • cos x =0 gives x = (2n + 1) π/2, where n ∈ Z.


Theorems Discussed For Trigonometric Functions Exercise 3.4:

  • Theorem 1: It states that for real numbers x and y sin x= sin y means x= nπ + (–1)n y, and n ∈ Z.

  • Theorem 2: It states that for real numbers x and y, cos x = cos y, means x = 2nπ ± y, and n ∈ Z. 

  • Theorem 3: It states that if x and y are not odd multiples of π/2, then tan x = tan y means x = nπ + y, where n ∈ Z


Trigonometric Functions Exercise 3.4:

The solution of a total of 12 equations asked in exercise 3.4 chapter Trigonometric Functions is available to help the students with relevant and precise solutions asked in the textbook. This exercise is based on principle solutions and general solutions discussed above. Also, it involves the three Theorems listed.


Tips to Solve NCERT Solutions of Exercise 3.4 Class 11 Maths Chapter 3 

Exercise 3.4 of NCERT  Class 11 Maths Chapter 3 contains 9 questions that deal with the concept of trigonometric equations, which is the most important part of the entire Chapter 3 Trigonometric Functions of Class 11 Maths. All the formulas and trigonometric identities you have learned in the previous exercises are to be applied here. Therefore, students need to develop the right skill set for solving trigonometric equations.


Here are some tips and points to remember if students want to navigate through Exercise 3.4 in Chapter 3 of Class 11 Maths smoothly.

  • Go through Vedantu’s NCERT Solutions for Maths Class 11 Chapter 3 (Ex 3.4) thoroughly as these are well-formed with an easy-to-understand pattern to help understand the topic clearly and secure good marks in exams.

  • Before starting to solve the questions of Chapter 3 of Class 11 Maths Exercise 3.4,  quickly go through the trigonometric terms, formulas, and identities, and remember them. 

  • Clear all the doubts as soon as possible.

  • Always solve the trigonometric equations questions step-wise. You can first refer to the examples provided in NCERT Solutions for Class 11 Maths Chapter 3 by Vedantu.


NCERT Solutions for Class 11 Maths Chapters

 

NCERT Solution Class 11 Maths of Chapter 3 All Exercises

Chapter 3 - Trigonometric Functions Exercises in PDF Format

Exercise 3.1

7 Questions & Solutions

Exercise 3.2

10 Questions & Solutions

Exercise 3.3

25 Questions & Solutions

Exercise 3.4

9 Questions & Solutions

Miscellaneous Exercise

10 Questions & Solutions


About Vedantu:

Vedantu explains clearly the concepts of subjects before starting any solution. This helps in a clear understanding of the topic and the students can retain the concepts for a longer period. Our solutions are provided by experts in the field, hence it removes the error and is done with precision. With a detailed answer explained for every question, you surely do not need to refer to more books for your questions.


Why Choose Us?

For clear and correct solutions of exercises mentioned in the textbook of Class 11 Mathematics Chapter 3, as well as for understanding the Mathematical concepts easily in simple language, it is recommended to use Vedantu solutions for your better knowledge and zero errors designed by experts.

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.4 - 2025-26

1. What is the simplest way to convert radians into degrees for NCERT Class 11 Maths Chapter 3?

The easiest method to convert radians into degrees is to multiply the radian value by 180/π.

Steps:
- Use the formula: Degrees = Radians × (180/π)
- For example: 2 radians × (180/π) ≈ 114.59°.
- Always remember to use this conversion for all Class 11 Trigonometric Functions questions involving angle measures.

This formula is crucial for stepwise solutions in both NCERT exercises and board exams.

2. How can students avoid common calculation errors in trigonometric identities?

To minimise calculation errors in trigonometric identities:

- Double-check whether angles are in degrees or radians before applying formulas.
- Memorise important trigonometric identities and conversion formulas.
- Break down each step: substitute values systematically.
- Highlight similar terms and signs for clarity.
- Use boxed key points or revision checklists for quick review.

Consistently reviewing solved examples and tracking common mistakes supports scoring high in Class 11 Maths Trigonometric Functions exams.

3. Are these Class 11 Maths Chapter 3 solutions sufficient for board and JEE/NEET preparation?

Yes, using comprehensive NCERT solutions for Class 11 Maths Chapter 3 builds a strong foundation for board exams and entrance tests like JEE and NEET.

Benefits include:
- Stepwise solutions covering all possible question types
- Practising radian and degree conversions, identities, and application problems
- Exposure to both direct and application-level questions as asked in competitive exams

Regular practice ensures conceptual clarity and improved exam performance.

4. How to use Vedantu’s solutions for last-minute trigonometry revision?

For last-minute revision, use Vedantu’s stepwise NCERT solutions efficiently:

- Revise key trigonometric identities and angle conversion formulas
- Review solved examples and important boxes for quick recall
- Attempt ‘Try Yourself’ exercises and answer checklists
- Download and practice from the PDF version for offline study

This targeted revision strategy ensures better time management and accuracy in exams.

5. Where can I download free Class 11 Maths Ch 3 solutions PDF?

You can download the NCERT Solutions for Class 11 Maths Chapter 3 in PDF format:

- Click the "Download Full Solutions PDF" button provided on the solution page.
- The PDF covers all exercises, including stepwise answers and revision notes.
- Suitable for offline use in board and entrance exam preparation.

Having the solutions offline allows for focused revision without internet dependence.

6. What’s the advantage of using stepwise solutions over answer keys for trigonometric functions?

Stepwise NCERT solutions offer several advantages over simple answer keys:

- Each calculation and formula substitution is shown clearly
- Helps identify exactly where you might make mistakes
- Improves understanding of Trigonometric Functions and conversions
- Builds exam skills for multi-part and application problems

This approach boosts conceptual clarity and exam confidence for Class 11 Maths students.

7. Which trigonometric identities and formulas should I memorise for Class 11 Chapter 3?

For Class 11 Chapter 3, memorise these important trigonometric formulas:

- Basic identities: sin²θ + cos²θ = 1, 1 + tan²θ = sec²θ, 1 + cot²θ = cosec²θ
- Angle conversion: Radians = Degrees × (π/180)
- Allied and supplementary angle identities
- Sum and difference formulas

Knowing these supports fast, accurate solutions in all exercises and exams.

8. What topics are covered in Class 11 Maths Chapter 3 – Trigonometric Functions as per the 2025 syllabus?

According to the CBSE 2025 syllabus, Chapter 3 – Trigonometric Functions covers:

- Measurement of angles (degrees and radians)
- Definition and properties of trigonometric functions
- Trigonometric identities and equations
- Conversion between degrees and radians
- Applications in geometry and real-life problems

Mastering these topics is essential for success in board and entrance exams.

9. How do I prepare effectively for trigonometry questions in Class 11 Maths exams?

Effective trigonometry preparation for Class 11 Maths includes:

- Practising all types of NCERT exercise problems step by step
- Memorising key identities and formulas
- Solving previous year and example questions
- Using error-checking strategies and revision notes
- Downloading and reviewing extra worksheets and practice MCQs

This method ensures strong exam readiness and confidence in the subject.

10. Why should I trust Vedantu's NCERT solutions for Class 11 Trigonometric Functions?

Vedantu’s NCERT solutions are trusted because:

- Solutions are written and reviewed by experienced CBSE educators
- All answers follow the latest 2025 syllabus and exam guidelines
- Stepwise explanations help avoid typical calculation errors
- The platform is reliable, student-friendly, and emphasises conceptual clarity

Using these solutions boosts your chances of scoring high marks in both board and competitive exams.