Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.2 - 2025-26

ffImage
banner

Trigonometric Functions Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 3 Exercise 3 2, you’ll get to know all about trigonometric functions—like sine, cosine, and tangent—and how they relate angles to triangle sides. This exercise makes trigonometry feel a lot less scary by showing step-by-step working for each problem, so you can finally stop worrying about sign conventions and quadrants.

toc-symbolTable of Content
toggle-arrow

If you ever feel stuck, the Vedantu solutions break down every question in easy-to-understand steps. Plus, you can quickly download the free PDF version to revise anytime. Want to see how this fits into your overall studies? Check out the Class 11 Maths syllabus for a full picture.


Regular practice with Class 11 Maths NCERT Solutions helps you gain confidence and prepares you well for exams. You’ll master important concepts needed for both board exams and competitive tests.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 11 Chapter 3 - Trigonometric Functions

Exercise 3.2

1. Find the values of the other five trigonometric functions if  $\text{cos x=-}\frac{\text{1}}{\text{2}}$ , $x$ lies in the third quadrant.

Ans:

Here given that,  $\text{cos x=-}\frac{\text{1}}{\text{2}}$

Therefore we have,

$\text{sec x=}\frac{\text{1}}{\text{cos x}}$

$\text{=}\frac{\text{1}}{\left( \text{-}\frac{\text{1}}{\text{2}} \right)}$

$\text{=-2}$

Now we know that, $\text{si}{{\text{n}}^{\text{2}}}\text{x+co}{{\text{s}}^{\text{2}}}\text{x=1}$

Therefore we have, $\text{si}{{\text{n}}^{\text{2}}}\text{x=1-co}{{\text{s}}^{\text{2}}}\text{x}$

Substituting  $\text{cos x=-}\frac{\text{1}}{\text{2}}$ in the formula, we obtain,

$\text{si}{{\text{n}}^{\text{2}}}\text{x=1-}{{\left( \text{-}\frac{\text{1}}{\text{2}} \right)}^{\text{2}}}$

$\text{si}{{\text{n}}^{\text{2}}}\text{x=1-}\frac{\text{1}}{\text{4}}$

$\text{=}\frac{\text{3}}{\text{4}}$

$\text{sin x= }\!\!\pm\!\!\text{ }\frac{\sqrt{\text{3}}}{\text{2}}$

Since $\text{x}$ lies in the ${{\text{3}}^{\text{rd}}}$quadrant, the value of $\sin x$ will be negative.

$\text{sin x=-}\frac{\sqrt{\text{3}}}{\text{2}}$

Therefore, $\text{cosec x=}\frac{\text{1}}{\text{sin x}}$ 

$\text{=}\frac{\text{1}}{\left( \text{-}\frac{\sqrt{\text{3}}}{\text{2}} \right)}$ 

$\text{=-}\frac{\text{2}}{\sqrt{\text{3}}}$ 

Hence ,

$\text{tan x=}\frac{\text{sin x}}{\text{cos x}}$ 

$\text{=}\frac{\left( \text{-}\frac{\sqrt{\text{3}}}{\text{2}} \right)}{\left( \text{-}\frac{\text{1}}{\text{2}} \right)}$

$\text{=}\sqrt{\text{3}}$

And 

$\text{cot x=}\frac{\text{1}}{\text{tan x}}$

$\text{=}\frac{\text{1}}{\sqrt{\text{3}}}$


2. Find the values of other five trigonometric functions if $\text{sin  x=}\frac{\text{3}}{\text{5}}$  , $\text{x}$ lies in second quadrant.

Ans:

Here given that,  $\text{sin x=}\frac{\text{3}}{\text{5}}$

Therefore we have,

$\text{cosec x=}\frac{\text{1}}{\text{sin x}}$

$=\frac{1}{\left( \frac{3}{5} \right)}$

$=\frac{5}{3}$

Now we know that , ${{\sin }^{2}}x+{{\cos }^{2}}x=1$

Therefore we have, $\text{co}{{\text{s}}^{\text{2}}}\text{x=1-si}{{\text{n}}^{\text{2}}}\text{x}$

Substituting  $\sin x=\frac{3}{5}$  in the formula, we obtain,

$\text{co}{{\text{s}}^{\text{2}}}\text{x=1-}{{\left( \frac{\text{3}}{\text{5}} \right)}^{\text{2}}}$

$\text{co}{{\text{s}}^{\text{2}}}\text{x=1-}\frac{\text{9}}{\text{25}}$

$\text{=}\frac{\text{16}}{\text{25}}$ 

$\text{cos x= }\!\!\pm\!\!\text{ }\frac{\text{4}}{\text{5}}$

Since $x$ lies in the ${{2}^{nd}}$ quadrant, the value of $\cos x$ will be negative.

$\text{cos x=-}\frac{\text{4}}{\text{5}}$

Therefore, $sec x=\frac{1}{\cos x}$ 

$\text{=}\frac{\text{1}}{\left( \text{-}\frac{\text{4}}{\text{5}} \right)}$ 

$\text{=-}\frac{\text{5}}{\text{4}}$ 

Hence ,

$\tan x=\frac{\sin  x}{\cos x}$ 

$\text{=}\frac{\left( \frac{\text{3}}{\text{5}} \right)}{\left( \text{-}\frac{\text{4}}{\text{5}} \right)}$

$\text{=-}\frac{\text{3}}{\text{4}}$

And 

$\cot x=\frac{1}{\tan x}$

$\text{=-}\frac{\text{4}}{\text{3}}$


3. Find the values of other five trigonometric functions if $\text{cot x=}\frac{\text{3}}{\text{4}}$ , $\text{x}$ lies in third quadrant.

Ans:

Here given that,  $\cot x=\frac{3}{4}$

Therefore we have,

$\tan x=\frac{1}{\cot x}$

$=\frac{1}{\left( \frac{3}{4} \right)}$

$=\frac{4}{3}$

Now we know that , \[\text{se}{{\text{c}}^{\text{2}}}\text{x-ta}{{\text{n}}^{\text{2}}}\text{x=1}\]

Therefore we have, $\text{se}{{\text{c}}^{\text{2}}}\text{x=1+ta}{{\text{n}}^{\text{2}}}\text{x}$

Substituting  $\text{tan x=}\frac{\text{4}}{\text{3}}$  in the formula, we obtain,

${{\sec }^{2}}x=1+{{\left( \frac{4}{3} \right)}^{2}}$

$\text{se}{{\text{c}}^{\text{2}}}\text{x=1+}\frac{\text{16}}{\text{9}}$

$=\frac{25}{9}$ 

$\text{sec x= }\!\!\pm\!\!\text{ }\frac{\text{5}}{\text{3}}$

Since $x$ lies in the ${{3}^{rd}}$ quadrant, the value of $\sec x$ will be negative.

$\text{sec x=-}\frac{\text{5}}{\text{3}}$

Therefore, $\cos  x=\frac{1}{\sec x}$ 

$\text{=}\frac{\text{1}}{\left( \text{-}\frac{\text{5}}{\text{3}} \right)}$ 

$\text{=-}\frac{\text{3}}{\text{5}}$ 

Now  , $\text{tan x=}\frac{\text{sin x}}{\text{cos x}}$ 

Therefore, $\text{sin x=tan xcos x}$ 

Hence we have, $\text{sin x=}\frac{\text{4}}{\text{3}}\text{ }\!\!\times\!\!\text{ }\left( \text{-}\frac{\text{3}}{\text{5}} \right)$   

\[\text{=}\left( \text{-}\frac{\text{4}}{\text{5}} \right)\] 

And 

$\text{cosec x=}\frac{\text{1}}{\text{sin x}}$

$\text{=-}\frac{\text{5}}{\text{4}}$


4. Find the values of other five trigonometric functions if $\text{sec  x=}\frac{\text{13}}{\text{5}}$  , $\text{x}$ lies in fourth quadrant.

Ans:

Here given that,  $\sec x=\frac{13}{5}$

Therefore we have,

$\cos x=\frac{1}{\sec x}$

$=\frac{1}{\left( \frac{13}{5} \right)}$

$=\frac{5}{13}$

Now we know that , $\text{se}{{\text{c}}^{\text{2}}}\text{x-ta}{{\text{n}}^{\text{2}}}\text{x=1}$

Therefore we have, $\text{ta}{{\text{n}}^{\text{2}}}\text{x=se}{{\text{c}}^{\text{2}}}\text{x-1}$

Substituting  \[\text{sec x=}\frac{\text{13}}{\text{5}}\]  in the formula, we obtain,

\[\text{ta}{{\text{n}}^{\text{2}}}\text{x=}{{\left( \frac{\text{13}}{\text{5}} \right)}^{\text{2}}}\text{-1}\]

$\text{ta}{{\text{n}}^{\text{2}}}\text{x=}\frac{\text{169}}{\text{25}}\text{-1}$

$\text{=}\frac{\text{144}}{\text{25}}$ 

\[\text{tanx= }\!\!\pm\!\!\text{ }\frac{\text{12}}{\text{5}}\]

Since $x$ lies in the ${{4}^{th}}$ quadrant, the value of $\tan x$ will be negative.

$\text{tan x=-}\frac{\text{12}}{\text{5}}$

Therefore, \[\text{cot x=}\frac{\text{1}}{\text{tan x}}\] 

$\text{=-}\frac{\text{5}}{\text{12}}$ 

Now  , $\text{tan x=}\frac{\text{sin x}}{\text{cos x}}$ 

Therefore, $\text{sin x=tan xcos x}$ 

Hence we have, $\text{sin x=}\frac{\text{5}}{\text{13}}\text{ }\!\!\times\!\!\text{ }\left( \text{-}\frac{\text{12}}{\text{5}} \right)$   

$\text{=}\left( \text{-}\frac{\text{12}}{\text{13}} \right)$ 

And 

$\text{cosec x=}\frac{\text{1}}{\text{sin x}}$

$\text{=-}\frac{\text{13}}{\text{12}}$


5. Find the values of other five trigonometric functions if  $\text{tan x=-}\frac{\text{5}}{\text{12}}$ , $\text{x}$ lies in second quadrant.

Ans:

Here given that,  $\text{tan x=-}\frac{\text{5}}{\text{12}}$

Therefore we have,

$\text{cot x=}\frac{\text{1}}{\text{tan x}}$

$\text{=}\frac{\text{1}}{\left( \text{-}\frac{\text{5}}{\text{12}} \right)}$

$\text{=-}\frac{\text{12}}{\text{5}}$

Now we know that , $\text{se}{{\text{c}}^{\text{2}}}\text{x-ta}{{\text{n}}^{\text{2}}}\text{x=1}$

Therefore we have, $\text{se}{{\text{c}}^{\text{2}}}\text{x=1+ta}{{\text{n}}^{\text{2}}}\text{x}$

Substituting  $\text{tan x=-}\frac{\text{5}}{\text{12}}$  in the formula, we obtain,

$\text{se}{{\text{c}}^{\text{2}}}\text{x=1+}{{\left( \text{-}\frac{\text{5}}{\text{12}} \right)}^{\text{2}}}$

$\text{se}{{\text{c}}^{\text{2}}}\text{x=1+}\frac{\text{25}}{\text{144}}$

$=\frac{169}{144}$ 

$\text{sec x= }\!\!\pm\!\!\text{ }\frac{\text{13}}{\text{12}}$

Since $x$ lies in the ${{2}^{nd}}$ quadrant, the value of $\sec x$ will be negative.

$\text{sec x=-}\frac{\text{13}}{\text{12}}$

Therefore, $\text{cos x=}\frac{\text{1}}{\text{sec x}}$ 

$\text{=-}\frac{\text{12}}{\text{13}}$ 

Now  , $\text{tan x=}\frac{\text{sin x}}{\text{cos x}}$ 

Therefore, $\text{sin x=tan xcos x}$ 

Hence we have, $\text{sin x=}\left( \text{-}\frac{\text{5}}{\text{12}} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-}\frac{\text{12}}{\text{13}} \right)$   

$=\left( \frac{5}{13} \right)$ 

And 

$\text{cosec x=}\frac{\text{1}}{\text{sin x}}$

$\text{=}\frac{\text{13}}{\text{5}}$


6. Find the value of the trigonometric function $\text{sin76}{{\text{5}}^{\text{o}}}$ .

Ans: We know that the values of $\sin x$ repeat after an interval of $2\pi $ or ${{360}^{\circ }}$ .

Therefore we can write,

$\text{sin76}{{\text{5}}^{\text{o}}}\text{=sin}\left( \text{2 }\!\!\times\!\!\text{ 36}{{\text{0}}^{\text{o}}}\text{+4}{{\text{5}}^{\text{o}}} \right)$

$\text{=sin4}{{\text{5}}^{\text{o}}}$

$\text{=}\frac{\text{1}}{\sqrt{\text{2}}}\text{.}$


7. Find the value of the trigonometric function $\text{cosec}\left( \text{-141}{{\text{0}}^{\text{o}}} \right)$  

Ans: We  know that the values of $\text{cosec x}$ repeat after an interval of $\text{2 }\!\!\pi\!\!\text{ }$ or ${{360}^{\circ }}$ .

Therefore we can write,

$\text{cosec}\left( \text{-141}{{\text{0}}^{\text{o}}} \right)\text{=cosec}\left( \text{-141}{{\text{0}}^{\text{o}}}\text{+4 }\!\!\times\!\!\text{ 36}{{\text{0}}^{\text{o}}} \right)$

$\text{=cosec}\left( \text{-141}{{\text{0}}^{\text{o}}}\text{+144}{{\text{0}}^{\text{o}}} \right)$

$\text{=cosec3}{{\text{0}}^{\text{o}}}$

$=2$ 


8. Find the value of the trigonometric function  $\text{tan}\frac{\text{19 }\!\!\pi\!\!\text{ }}{\text{3}}$ .

Ans: We know that the values of $\text{tan x}$ repeat after an interval of $\text{ }\!\!\pi\!\!\text{ }$ or \[{{180}^{\circ }}\].

Therefore we can write,

$\text{tan}\frac{\text{19 }\!\!\pi\!\!\text{ }}{\text{3}}\text{=tan6}\frac{\text{1}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }$

$\text{=tan}\left( \text{6 }\!\!\pi\!\!\text{ +}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}} \right)$

\[\text{=tan}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\]

$\text{=}\sqrt{\text{3}}$      


9. Find the value of the trigonometric function $\text{sin}\left( \text{-}\frac{\text{11 }\!\!\pi\!\!\text{ }}{\text{3}} \right)$ 

Ans: We know that the values of $\text{sin x}$ repeat after an interval of $\text{2 }\!\!\pi\!\!\text{ }$ or ${{360}^{\circ }}$ .

Therefore we can write,

$\text{sin}\left( \text{-}\frac{\text{11 }\!\!\pi\!\!\text{ }}{\text{3}} \right)\text{=sin}\left( \text{-}\frac{\text{11 }\!\!\pi\!\!\text{ }}{\text{3}}\text{+2 }\!\!\times\!\!\text{ 2 }\!\!\pi\!\!\text{ } \right)$ 

$\text{=sin}\left( \frac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}} \right)$

$=\frac{\sqrt{3}}{2}$


10. Find the value of the trigonometric function $\text{cot}\left( \text{-}\frac{\text{15 }\!\!\pi\!\!\text{ }}{\text{4}} \right)$ 

Ans: We know that the values of $\text{cot x}$ repeat after an interval of $\text{ }\!\!\pi\!\!\text{ }$ or \[{{180}^{\circ }}\].

Therefore we can write,

$\text{cot}\left( \text{-}\frac{\text{15 }\!\!\pi\!\!\text{ }}{\text{4}} \right)\text{=cot}\left( \text{-}\frac{\text{15 }\!\!\pi\!\!\text{ }}{\text{4}}\text{+4 }\!\!\pi\!\!\text{ } \right)$ 

$\text{=cot}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}$

$=1$


Points to Remember Before Solving Exercise 3.2

1. Trigonometric Identities 

  • sin2 A + cos2 A = 1

  • 1 + tan2 A = sec2 A

  • 1 + cot2 A = cosec2 A


2. Domain and Range of Trigonometric Functions

The input and output values of trigonometric functions, respectively, are the domain and range of trigonometric functions. The range of trigonometric functions denotes the resultant value of the trigonometric function corresponding to a given angle in the domain, whereas the domain of trigonometric functions denotes the values of angles where the trigonometric functions are given.


3. Sign of Trigonometric Functions in Different Quadrants

All functions are positive in the first quadrant, only sin and cosec are positive in the second quadrant, and only tan and cot are positive in the third quadrant, and only cos and sec are positive in the fourth quadrant. 


4. Domain and Range Table for Trigonometric Functions

Trigonometric Functions

Domain

Range

sin θ

(-∞, + ∞)

[-1, +1]

cos θ

(-∞, +∞)

[-1, +1]

tan θ

R - (2n + 1)π/2

(-∞, +∞)

cot θ

R - nπ

(-∞, +∞)

sec θ

R - (2n + 1)π/2

(-∞, -1] U [+1, +∞)

cosec θ

R - nπ

(-∞, -1] U [+1, +∞)


Conclusion

Understanding trigonometric functions is crucial for solving problems involving angles and triangles. Focus on mastering the definitions, sign conventions, domain, range, and graphical representations of sine, cosine, and tangent functions. These concepts are foundational in fields like engineering, physics, and architecture. Previous year question papers typically include 2-3 questions on trigonometric functions, highlighting their importance in exams. Practice diverse problems and use NCERT Solutions to strengthen your understanding and preparation. Clear concepts in trigonometry will not only aid in academic success but also in practical applications in various disciplines.


Class 11 Maths Chapter 3: Exercises Breakdown

Exercise

Number of Questions

Exercise 3.1

7 Questions and Solutions

Exercise 3.3

25 Questions and Solutions

Miscellaneous Exercise

10 Questions and Solutions


CBSE Class 11 Maths Chapter 3 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

The chapter-wise NCERT Solutions for Class 11 Maths are given below. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.2 - 2025-26

1. Where can I find reliable, step-by-step NCERT Solutions for Class 11 Maths Chapter 3 for the 2025-26 session?

You can find comprehensive and accurate NCERT Solutions for Class 11 Maths Chapter 3, Trigonometric Functions, on Vedantu. These solutions are prepared by subject matter experts and strictly follow the 2025-26 CBSE curriculum, providing a detailed, step-by-step approach to every problem in the textbook to ensure complete understanding.

2. What is the correct method to solve problems requiring conversion between degrees and radians as per NCERT Exercise 3.1?

To solve conversion problems in Exercise 3.1, you must use the fundamental relationship π radians = 180°. Follow this method:

  • To convert degrees to radians, multiply the angle by π/180.
  • To convert radians to degrees, multiply the angle by 180/π.
For example, to convert 60° to radians, the calculation is 60 × (π/180) = π/3 radians. This is the standard method used in all NCERT solutions.

3. How do I solve problems in Exercise 3.2 that ask for the values of trigonometric functions when the angle lies in a specific quadrant?

The correct approach is to first identify the quadrant and then use the ASTC rule (All, Sine, Tangent, Cosine) to determine the sign (+ or -) of the trigonometric function. For example, if cos x = -1/2 and x lies in the third quadrant:

  • In the third quadrant, only tan x and cot x are positive.
  • Use the identity sin²x + cos²x = 1 to find the numerical value of sin x.
  • Apply the negative sign to sin x because it is negative in the third quadrant.
  • Find other functions using these values.

4. What is a common mistake when finding the value of a trigonometric function for an angle greater than 360°, and how do the NCERT solutions address it?

A common mistake is incorrectly calculating the reference angle. The correct NCERT method is to break down the angle using the periodicity of trigonometric functions. For instance, to find sin(765°), you should express it as sin(n × 360° + θ). Here, 765° = 2 × 360° + 45°. Since the sine function has a period of 360°, sin(765°) = sin(45°), which is 1/√2. This ensures you are always working with an equivalent angle within the 0° to 360° range.

5. Why is using the identity sin²x + cos²x = 1 a more reliable method than using right-angled triangles for solving problems in Exercise 3.2?

While right-angled triangles work for acute angles, they do not account for the signs of trigonometric functions in the four different quadrants (I, II, III, IV). The identity sin²x + cos²x = 1 is a universal algebraic method that works for any angle. It allows you to find the magnitude of one function from another, and you can then apply the correct sign based on the specified quadrant, which is the standard and error-free approach as per the CBSE pattern.

6. How are the sum and difference formulas, like sin(A+B), used to solve questions in the NCERT textbook?

The sum and difference formulas are used to find the exact values of trigonometric functions for angles that are not standard (like 0°, 30°, 45°, 60°, 90°), but can be expressed as a sum or difference of standard angles. For example, to solve for sin(75°), you can write it as sin(45° + 30°) and then apply the formula: sin(A+B) = sinA cosB + cosA sinB. This method is crucial for solving problems in Exercise 3.3.

7. What is the step-by-step approach to finding the 'principal solution' and 'general solution' for trigonometric equations in the final NCERT exercise?

The correct approach involves two stages:

  • Principal Solution: Find all solutions (angles) for the equation that lie in the interval [0, 2π). There are usually two such solutions. For example, for sin x = 1/2, the principal solutions are x = π/6 and x = 5π/6.
  • General Solution: Use the principal solution to write a formula that represents all possible solutions. For sin x = sin y, the general solution is x = nπ + (-1)ⁿy, where n is any integer. This formula covers every possible angle for which the equation holds true.

8. Do the NCERT Solutions for Chapter 3 cover all exercises, including the Miscellaneous Exercise? Why is it important?

Yes, comprehensive NCERT Solutions for Chapter 3 on platforms like Vedantu cover all exercises, including the Miscellaneous Exercise. This exercise is extremely important because it contains Higher Order Thinking Skills (HOTS) questions that combine multiple concepts from the chapter. Solving these problems is crucial for building a deeper understanding and preparing for questions that require complex application of formulas, which are common in final exams.

9. How do I use the NCERT solutions to understand the graphs of sine and cosine functions?

The NCERT solutions help you understand the graphs by connecting them to the functions' properties. Focus on how the solutions explain these key aspects:

  • Domain and Range: The graph visually shows that the domain for sin x and cos x is all real numbers (ℝ), and the range is [-1, 1].
  • Periodicity: The solutions illustrate how the graph repeats itself after an interval of 2π, which is the period of the function.
  • Sign Conventions: The graph clearly shows where the function is positive (above the x-axis) and negative (below the x-axis), reinforcing the ASTC rule.
Using the solutions helps relate the abstract formulas to a visual, tangible representation.

10. What are the most important formulas from Chapter 3 that are repeatedly used in solving the NCERT problems?

To solve the NCERT problems in Chapter 3 effectively, you must master the following formulas:

  • The fundamental identity: sin²x + cos²x = 1.
  • Sum and Difference Formulas: sin(A ± B), cos(A ± B), and tan(A ± B).
  • Double-Angle Formulas: sin(2x), cos(2x), and tan(2x).
  • General Solution formulas for trigonometric equations.
These formulas form the backbone of the chapter and are applied across multiple exercises.