Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives Exercise 12.2 - 2025-26

ffImage
banner

Maths Class 11 Chapter 12 Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 12 Exercise 12 2, you’ll dive into the basics of limits and derivatives, the building blocks of calculus. This chapter helps you understand how functions behave as values get closer to a point and teaches you to solve problems using simple techniques like factoring and rationalising.

toc-symbolTable of Content
toggle-arrow

Struggling with questions like “How do I find the limit or derivative of a tricky function?” Don’t worry! Vedantu’s step-by-step NCERT Solutions, available as a free PDF, break down every question in clear, easy language. Download them to practise at your own pace and clear up common doubts. To see what else you’ll study this year, check the Class 11 Maths Syllabus.


These NCERT Solutions guide you through the CBSE syllabus, making exam prep much smoother. You can also review all Class 11 Maths NCERT Solutions to get ready for other chapters in Mathematics.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 11 Chapter 12 - Limits and Derivatives

Exercise 12.2

1. Find the derivative of \[{x^2} - 2\]at $x = 10$

Ans: Let $f\left( x \right) = {x^2} - 2$

Accordingly,

$f'\left( 10 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 10+h \right)-f\left( 10 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {{{\left( {10 + h} \right)}^2} - 2} \right] - \left( {{{10}^2} - 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{{10}^2} + \left( {2 \times 10 \times h} \right) + {h^2} - 2 - {{10}^2} + 2}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{20h + {h^2}}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {20 + h} \right) = 20 + 0 = 20$

Thus, the derivative of ${x^2} - 2$at $x = 10$is $20$


2. Find the derivative of $x$at $x = 1$

Ans: Let $f\left( x \right) = x$

Accordingly,

$f'\left( 1 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 1+h \right)-f\left( 1 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 + h} \right) - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{h}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( 1 \right) = 1$

Thus, the derivative of $x$at $x = 1$is $1$


3. Find the derivative of $99x$at $x = 100$

Ans: Let $f\left( x \right) = 99x$

Accordingly,

$f'\left( 100 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 100+h \right)-f\left( 100 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{99\left( {100 + h} \right) - \left( {99 \times 100} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {99 \times 100} \right) + 99h - \left( {99 \times 100} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{99h}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {99} \right) = 99$

Thus, the derivative of $99x$at $x = 100$is $99$


4. Find the derivative of the following functions using the first principle.

(i). ${x^3} - 27$

Ans: Let $f\left( x \right) = {x^3} - 27$

Accordingly, from the first principle,

     $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {{{\left( {x + h} \right)}^3} - 27} \right] - \left( {{x^3} - 27} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{x^3} + {h^3} + 3{x^2}h + 3x{h^2} - {x^3}}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {{h^2} + 3{x^2} + 3xh} \right)$

$ \Rightarrow 0 + 3{x^2} + 0 = 3{x^2}$


(ii). $\left( {x - 1} \right)\left( {x - 2} \right)$

Ans: Let $f\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {x + h - 1} \right)\left( {x + h - 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {{x^2} + hx - 2x + hx + {h^2} - 2h - x - h + 2} \right) - \left( {{x^2} - 2x - x + 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {hx + hx + {h^2} - 2h - h} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{2hx + {h^2} - 3h}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {2x + h - 3} \right) = 2x - 3$


(iii). $\frac{1}{{{x^2}}}$

Ans: Let $f\left( x \right) = \frac{1}{{{x^2}}}$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{{{\left( {x + h} \right)}^2}}} - \frac{1}{{{x^2}}}}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{{x^2} - {{\left( {x + h} \right)}^2}}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{{x^2} - {x^2} - 2hx - {h^2}}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - {h^2} - 2hx}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - {h^2} - 2x}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right] = \frac{{0 - 2x}}{{{x^2}{{\left( {x + 0} \right)}^2}}}$

$ \Rightarrow \frac{{ - 2}}{{{x^3}}}$


(iv). $\frac{{x + 1}}{{x - 1}}$

Ans: Let $f\left( x \right) = \frac{{x + 1}}{{x - 1}}$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {\frac{{x + h + 1}}{{x + h - 1}} - \frac{{x + 1}}{{x - 1}}} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\left( {x - 1} \right)\left( {x + h + 1} \right) - \left( {x + 1} \right)\left( {x + h - 1} \right)}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\left( {{x^2} + hx + x - x - h - 1} \right) - \left( {{x^2} + hx - x + x + h - 1} \right)}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2h}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - 2}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right] = \frac{{ - 2}}{{\left( {x - 1} \right)\left( {x - 1} \right)}}$

$ \Rightarrow \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}}$


5. For the function $f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1$prove that      $f'\left( 1 \right)=100f'\left( 0 \right)$

Ans: The given function is,

$f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1} \right]$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left( {\frac{{{x^{100}}}}{{100}}} \right) + \frac{d}{{dx}}\left( {\frac{{{x^{99}}}}{{99}}} \right) + ... + \frac{d}{{dx}}\left( {\frac{{{x^2}}}{2}} \right) + \frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( 1 \right)$

On using theorem $\frac{d}{{dx}}\left( {n{x^{n - 1}}} \right) = n{x^{n - 1}}$, we obtain

$\frac{d}{{dx}}f\left( x \right) = \frac{{100{x^{99}}}}{{100}} + \frac{{99{x^{98}}}}{{99}} + .... + \frac{{2x}}{2} + 1 + 0$

$\Rightarrow {x^{99}} + {x^{98}} + .... + x + 1$

$\therefore \text{ }f'\left( x \right)={{x}^{99}}+{{x}^{98}}+.....x+1$

At $x = 0,$

$f'\left( 0 \right)=1$

At $x = 1,$

$f'\left( 1 \right)={{1}^{99}}+{{1}^{98}}+....+1+1={{\left[ 1+1+....+1+1 \right]}_{100terms}}$

$\Rightarrow 1 \times 100 = 100$

Thus, $f'\left( 1 \right)=100f'\left( 0 \right)$


6. Find the derivative of ${x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}$ , where$a$ is some fixed real number.

Ans: Let$f\left( x \right) = {x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left( {{x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}} \right)$

$\Rightarrow \frac{{d\left( {{x^n}} \right)}}{{dx}} + a\frac{{d\left( {{x^{n - 1}}} \right)}}{{dx}} + {a^2}\frac{{d\left( {{x^{n - 2}}} \right)}}{{dx}} + .... + {a^{n - 1}}\frac{{d\left( x \right)}}{{dx}} + {a^n}\frac{{d\left( 1 \right)}}{{dx}}$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$

So, we obtain

\[f'\left( x \right)=n{{x}^{n-1}}+a\left( n-1 \right){{x}^{n-2}}+{{a}^{2}}\left( n-2 \right){{x}^{n-3}}+....+{{a}^{n-1}}+{{a}^{n}}\left( 0 \right)\]

$\therefore \text{ }f'\left( x \right)=n{{x}^{n-1}}+a\left( n-1 \right){{x}^{n-2}}+{{a}^{2}}\left( n-2 \right){{x}^{n-3}}+...+{{a}^{n-1}}$


7. For some constants $a$and $b$, find the derivative of the following functions.

(a). $\left( {x - a} \right)\left( {x - b} \right)$

Ans: Let $f\left( x \right) = \left( {x - a} \right)\left( {x - b} \right)$

$\Rightarrow f\left( x \right) = {x^2} - \left( {a - b} \right)x + ab$

$\therefore \text{ }f'\left( x \right)=\frac{d}{dx}\left( {{x}^{2}}-\left( a+b \right)x+ab \right)$

$\Rightarrow \frac{d}{{dx}}\left( {{x^2}} \right) - \left( {a + b} \right)\frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( {ab} \right)$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we obtain

$f'\left( x \right)=2x-\left( a+b \right)+0=2x-a-b$


(b). ${\left( {a{x^2} + b} \right)^2}$

Ans: Let, $f\left( x \right) = {\left( {a{x^2} + b} \right)^2}$

$\Rightarrow f\left( x \right) = {a^2}{x^4} + 2ab{x^2} + {b^2}$

$\therefore \text{ }f'\left( x \right)=\frac{d}{dx}\left( {{a}^{2}}{{x}^{4}}+2ab{{x}^{2}}+{{b}^{2}} \right)$

$\Rightarrow {a^2}\frac{d}{{dx}}\left( {{x^4}} \right) + 2ab\frac{d}{{dx}}\left( {{x^2}} \right) + \frac{d}{{dx}}{b^2}$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we obtain

$f'\left( x \right)={{a}^{2}}\left( 4{{x}^{3}} \right)+2ab\left( 2x \right)+{{b}^{2}}\left( 0 \right)$

$\Rightarrow 4{a^2}{x^3} + 4abx = 4ax\left( {a{x^2} + b} \right)$


(c). $\frac{{x - a}}{{x - b}}$

Ans: Let, $f\left( x \right) = \frac{{x - a}}{{x - b}}$

$\Rightarrow \text{ }f'\left( x \right)=\frac{d}{dx}\left( \frac{x-a}{x-b} \right)$

By quotient rule,

$f'\left( x \right)=\frac{\left( x-b \right)\frac{d}{dx}\left( x-a \right)-\left( x-a \right)\frac{d}{dx}\left( x-b \right)}{{{\left( x-b \right)}^{2}}}$

$\Rightarrow \frac{{\left( {x - b} \right) \times 1 - \left( {x - a} \right) \times 1}}{{{{\left( {x - b} \right)}^2}}}$

$\Rightarrow \frac{{x - b - x + a}}{{{{\left( {x - b} \right)}^2}}} = \frac{{a - b}}{{{{\left( {x - b} \right)}^2}}}$


8. Find the derivative of $\frac{{{x^n} - {a^n}}}{{x - a}}$for any constant $a$

Ans: Let $f\left( x \right) = \frac{{{x^n} - {a^n}}}{{x - a}}$

$\Rightarrow \text{ }f'\left( x \right)=\frac{d}{dx}\left( \frac{{{x}^{n}}-{{a}^{n}}}{x-a} \right)$

By quotient rule,

$f'\left( x \right)=\frac{\left( x-a \right)\frac{d}{dx}\left( {{x}^{n}}-{{a}^{n}} \right)-\left( {{x}^{n}}-{{a}^{n}} \right)\frac{d}{dx}\left( x-a \right)}{{{\left( x-a \right)}^{2}}}$

$\Rightarrow \frac{{\left( {x - a} \right)\left( {n{x^{n - 1}} - 0} \right) - \left( {{x^n} - {a^n}} \right)}}{{{{\left( {x - a} \right)}^2}}}$

$\Rightarrow \frac{{n{x^n} - an{x^{n - 1}} - {x^n} + {a^n}}}{{{{\left( {x - a} \right)}^2}}}$


9. Find the derivative of the following functions

(a). $2x - \frac{3}{4}$

Ans: Let $f\left( x \right) = 2x - \frac{3}{4}$

$f'\left( x \right)=\frac{d}{dx}\left( 2x-\frac{3}{4} \right)$

$\Rightarrow 2\frac{d}{{dx}}\left( x \right) - \frac{d}{{dx}}\left( {\frac{3}{4}} \right)$

$\Rightarrow 2 - 0 = 2$


(b). $\left( {5{x^3} + 3x - 1} \right)\left( {x - 1} \right)$

Ans: Let $f\left( x \right) = \left( {5{x^3} + 3x - 1} \right)\left( {x - 1} \right)$

By Leibnitz product rule,

\[f'\left( x \right)=\left( 5{{x}^{3}}+3x-1 \right)\frac{d}{dx}\left( x-1 \right)+\left( x-1 \right)\frac{d}{dx}\left( 5{{x}^{3}}+3x-1 \right)\]

$\Rightarrow \left( {\left( {5{x^3} + 3x - 1} \right) \times 1} \right) + \left( {x - 1} \right)\left( {5 \times 3{x^2} + 3 - 0} \right)$

$\Rightarrow \left( {5{x^3} + 3x - 1} \right) + \left( {x - 1} \right)\left( {15{x^2} + 3} \right)$

$\Rightarrow 5{x^3} + 3x - 1 + 15{x^3} + 3x - 15{x^2} - 3$

$\Rightarrow 20{x^3} - 15{x^2} + 6x - 4$


(c). ${x^{ - 3}}\left( {5 + 3x} \right)$

Ans: Let, $f\left( x \right) = {x^{ - 3}}\left( {5 + 3x} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^{ - 3}}\frac{d}{{dx}}\left( {5 + 3x} \right) + \left( {5 + 3x} \right)\frac{d}{{dx}}\left( {{x^{ - 3}}} \right)$

$\Rightarrow {x^{ - 3}}\left( {0 + 3} \right) + \left( {5 + 3x} \right)\left( {3{x^{ - 3 - 1}}} \right)$

$\Rightarrow 3{x^{ - 3}} + \left( {5 + 3x} \right)\left( { - 3{x^{ - 4}}} \right) = 3{x^{ - 3}} - 15{x^{ - 4}} - 9{x^{ - 3}}$

$\Rightarrow  - 6{x^{ - 3}} - 15{x^{ - 4}} =  - 3{x^{ - 3}}\left( {2 + \frac{5}{x}} \right) = \frac{{ - 3{x^{ - 3}}}}{x}\left( {2x + 5} \right)$

$\Rightarrow \frac{{ - 3}}{{{x^4}}}\left( {5 + 2x} \right)$


(d). ${x^5}\left( {3 - 6{x^{ - 9}}} \right)$

Ans: Let, $f\left( x \right) = {x^5}\left( {3 - 6{x^{ - 9}}} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^5}\frac{d}{{dx}}\left( {3 - 6{x^{ - 9}}} \right) + \left( {3 - 6{x^{ - 9}}} \right)\frac{d}{{dx}}{x^5}$

$\Rightarrow {x^5}\left\{ {0 - 6\left( { - 9} \right){x^{ - 9 - 1}}} \right\} + \left( {3 - 6{x^{ - 9}}} \right)\left( {5{x^4}} \right)$

$\Rightarrow {x^5}\left( {54{x^{ - 10}}} \right) + 15{x^4} - 30{x^{ - 5}} = 54{x^{ - 5}} + 15{x^4} - 30{x^{ - 5}}$

$\Rightarrow 24{x^{ - 5}} + 15{x^4} = 15{x^4} + \frac{{24}}{{{x^5}}}$


(e). ${x^{ - 4}}\left( {3 - 4{x^{ - 5}}} \right)$

Ans: Let $f\left( x \right) = {x^{ - 4}}\left( {3 - 4{x^{ - 5}}} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^{ - 4}}\frac{d}{{dx}}\left( {3 - 4{x^{ - 5}}} \right) + \left( {3 - 4{x^{ - 5}}} \right)\frac{d}{{dx}}\left( {{x^{ - 4}}} \right)$

$\Rightarrow {x^{ - 4}}\left\{ {0 - 4\left( { - 5} \right){x^{ - 5 - 1}}} \right\} + \left( {3 - 4{x^{ - 5}}} \right)\left( { - 4} \right){x^{ - 4 - 1}}$

$\Rightarrow {x^{ - 4}}\left( {20{x^{ - 6}}} \right) + \left( {3 - 4{x^{ - 5}}} \right)\left( { - 4{x^{ - 5}}} \right)$

$\Rightarrow 20{x^{ - 10}} - 12{x^{ - 5}} + 16{x^{ - 10}} = 36{x^{ - 10}} - 12{x^{ - 5}}$

$\Rightarrow \frac{{36}}{{{x^{10}}}} - \frac{{12}}{{{x^5}}}$


(f). $\frac{2}{{x + 1}} - \frac{{{x^2}}}{{3x - 1}}$

Ans: $f\left( x \right) = \frac{2}{{x + 1}} - \frac{{{x^2}}}{{3x - 1}}$

$f'\left( x \right) = \frac{d}{{dx}}\left( {\frac{2}{{x + 1}}} \right) - \frac{d}{{dx}}\left( {\frac{{{x^2}}}{{3x - 1}}} \right)$

By quotient rule,

$f'\left( x \right) = \left[ {\frac{{\left( {x + 1} \right)\frac{d}{{dx}}\left( 2 \right) - 2\frac{d}{{dx}}\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \right] - \left[ {\frac{{\left( {3x - 1} \right)\frac{d}{{dx}}\left( {{x^2}} \right) - {x^2}\frac{d}{{dx}}\left( {3x - 1} \right)}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \left[ {\frac{{\left( {x + 1} \right)\left( 0 \right) - 2\left( 0 \right)}}{{{{\left( {x + 1} \right)}^2}}}} \right] - \left[ {\frac{{\left( {3x - 1} \right)\left( {2x} \right) - {x^2}\left( 3 \right)}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \left[ {\frac{{6{x^2} - 2x - 3{x^2}}}{{{{\left( {3x - 1} \right)}^2}}}} \right] = \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \left[ {\frac{{3{x^2} - 2x}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \frac{{x\left( {3x - 2} \right)}}{{{{\left( {3x - 1} \right)}^2}}}$


10. Find the derivative of $\cos x$from the first principle

Ans: Let $f\left( x \right) = \cos x$

Accordingly from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos \left( {x + h} \right) - \cos \left( x \right)}}{h}} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos x\cosh  - \sin x\sinh  - \cos x}}{h}} \right] = \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right)}}{h} - \frac{{\sin x\sinh }}{h}} \right]$

$\Rightarrow  - \cos x\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{1 - \cosh }}{h}} \right)} \right] - \sin x\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{\sinh }}{h}} \right)} \right]$

We know, $\mathop {\lim }\limits_{h \to 0} \frac{{1 - \cosh }}{h} = 0$ and $\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h} = 1$

$\Rightarrow f'\left( x \right) =  - \cos x \times 0 - \sin x \times 1$

$\therefore f'\left( x \right) =  - \sin x$


11. Find the derivative of the functions below:

(i). $\sin x\cos x$

Ans: Let $f\left( x \right) = \sin x\cos x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {x + h} \right)\cos \left( {x + h} \right) - \sin x\cos x}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\sin \left( {x + h} \right)\cos \left( {x + h} \right) - 2\sin x\cos x} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {\sin 2\left( {x + h} \right) - \sin 2x} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\cos \frac{{2x + 2h + 2x}}{2}.\sin \frac{{2x + 2h - 2x}}{2}} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\cos \frac{{4x + 2h}}{2}.\sin \frac{{2h}}{2}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {\cos \left( {2x + h} \right)\sinh } \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \cos \left( {2x + h} \right).\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}$

$\Rightarrow \cos \left( {2x + h} \right) \times 1 = \cos 2x$


(ii). $\sec x$

Ans: Let $f\left( x \right) = \sec x$

Accordingly, from the first principle

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\sec \left( {x + h} \right) - \sec x}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos \left( {x + h} \right)}} - \frac{1}{{\cos x}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\frac{{\left[ { - 2\sin \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\cos \left( {x + h} \right)}}$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}$

$\Rightarrow \frac{1}{{\cos x}} \times 1 \times \frac{{\sin x}}{{\cos x}} = \sec x\tan x$


(iii). $5\sec x + 4\cos x$

Ans: Let, 

$f\left( x \right) = 5\sec x + 4\cos x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \frac{{\lim }}{{h \to 0}}\frac{{5\sec \left( {x + h} \right) + 4\cos \left( {x + h} \right) - \left[ {5\sec x + 4\cos x} \right]}}{h}$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sec \left( {x + h} \right) - \sec x} \right]}}{h} + 4\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\cos \left( {x + h} \right) - \cos x} \right]}}{h}$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos \left( {x + h} \right)}} - \frac{1}{{\cos x}}} \right] + 4\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {x + h} \right) - \cos x} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right] + 4\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos x\cosh  - \sin x\sinh  - \cos x} \right]$

$ \Rightarrow \frac{5}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right] + 4\left[ { - \cos x\mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 - \cos x} \right)}}{h} - \sin x\mathop {\lim \frac{{\sinh }}{h}}\limits_{h \to 0} } \right]$

$ \Rightarrow \frac{5}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sin \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\cos \left( {x + h} \right)}} + 4\left[ { - \cos x\left( 0 \right) - \sin x\left( 1 \right)} \right]$

$ \Rightarrow \frac{5}{{\cos x}}\left[ {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right] - 4\sin x$

$ \Rightarrow \frac{5}{{\cos x}} \times \frac{{\sin x}}{{\cos x}} \times 1 - 4\sin x = 5\sec x\tan x - 4\sin x$


(iv). $\cos ecx$

Ans: Let $f\left( x \right) = \cos ecx$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\sin \left( {x + h} \right)}} - \frac{1}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x - \sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ { - \cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\sin x\sin \left( {x + h} \right)}}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right)\mathop {\lim }\limits_{\frac{h}{2} \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}$

$ \Rightarrow \left( {\frac{{ - \cos x}}{{\sin x\sin x}}} \right) \times 1 =  - \cos ecx\cot x$


(v). $3\cot x + 5\cos ecx$

Ans: Let $f\left( x \right) = 3\cot x + 5\cos ecx$

Accordingly, from the first principle

 $f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {3\cot \left( {x + h} \right) + 5\cos ec\left( {x + h} \right) - 3\cot x - 5\cos ecx} \right]$

\[ \Rightarrow 3\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cot \left( {x + h} \right) - \cot x} \right] + 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right]\,\,\,\,\,\,\,\,\,\,....\left( 1 \right)\]

Now, $\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cot \left( {x + h} \right) - \cot x} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos \left( {x + h} \right)}}{{\sin \left( {x + h} \right)}} - \frac{{\cos x}}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos \left( {x + h} \right)\sin x - \cos x\sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( {x - x - h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( { - h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}.\mathop {\lim }\limits_{h \to 0} \left[ {\frac{1}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow  - 1 \times \frac{1}{{\sin x\sin \left( {x + h} \right)}} = \frac{{ - 1}}{{{{\sin }^2}x}} =  - \cos e{c^2}x\,\,\,\,\,\,......(2)$

$\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\sin \left( {x + h} \right)}} - \frac{1}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x - \sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}}}{{\sin x\sin \left( {x + h} \right)}}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right)\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}} = \left( {\frac{{ - \cos x}}{{\sin x\sin x}}} \right).1$

$ \Rightarrow  - \cos ecx\cot x\,\,\,\,\,\,......(3)$

From (1), (2), and (3), we obtain

$f'\left( x \right) =  - 3\cos e{c^2}x - 5\cos ecx\cot x$


(vi). $5\sin x - 6\cos x + 7$

Ans: Let $f\left( x \right) = 5\sin x - 6\cos x + 7$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {5\sin \left( {x + h} \right) - 6\cos \left( {x + h} \right) + 7 - 5\sin x + 6\cos x - 7} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\sin \left( {x + h} \right) - \sin x} \right] - 6\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {x + h} \right) - \cos x} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\cos \left( {\frac{{x + h + x}}{2}} \right).\sin \left( {\frac{{x + h - x}}{2}} \right)} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos x\cosh  - \sin x\sinh  - \cos x}}{h}} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\cos \left( {\frac{{2x + h}}{2}} \right).\sin \left( {\frac{h}{2}} \right)} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right) - \sin x\sinh }}{h}} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right)}}{h} - \frac{{\sin x\sinh }}{h}} \right]$

$ \Rightarrow 5\left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\frac{{2x + h}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right] - 6\left[ { - \cos x\left( {\mathop {\lim }\limits_{h \to 0} \frac{{1 - \cosh }}{h}} \right) - \sin x\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}} \right)} \right]$

$ \Rightarrow 5\cos x.1 - 6\left[ {\left( { - \cos x} \right).\left( 0 \right) - \sin x.1} \right]$

$ \Rightarrow 5\cos x + 6\sin x$


(vii). $2\tan x - 7\sec x$

Ans: Let $f\left( x \right) = 2\tan x - 7\sec x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\tan \left( {x + h} \right) - 7\sec \left( {x + h} \right) - 2\tan x + 7\sec x}\right]$

  $ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\tan \left( {x + h} \right) - \tan x} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\sec \left( {x + h} \right) - \sec x} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \frac{{\sin x}}{{\cos x}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos ec\left( {x + h} \right)}} - \frac{1}{{\cos ecx}}} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x\sin \left( {x + h} \right) - \sin x\cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x + h - x}}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{\sinh }}{h}} \right)\frac{1}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}} \right)\left[ {\mathop {\lim }\limits_{h \to 0} \frac{1}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\frac{h}{2}}}} \right)\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right)$

$ \Rightarrow 2 \times 1 \times 1 \times \frac{1}{{\cos x\cos x}} - 7\left( {1 \times \frac{{\sin x}}{{\cos x\cos x}}} \right) = 2{\sec ^2}x - 7\sec x\tan x$


Conclusion

Class 11 Maths Exercise 12.2 Solutions has helped Students understand the concept of limits and how to find them for different functions. You already have practiced using techniques like factoring, rationalizing, and standard limit forms to determine the limit as the input gets close to a specific value. By learning these methods, students now have a good foundation in the basics of calculus. Class 11 Maths Limits and Derivatives Exercise 12.2 will help students understand complex topics as they move on to more advanced topics like derivatives and integrals.


Class 11 Maths Chapter 12: Exercises Breakdown

Exercise

Number of Questions

Exercise 12.1

32 Questions & Solutions

Miscellaneous Exercise

30 Questions & Solutions


CBSE Class 11 Maths Chapter 12 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives Exercise 12.2 - 2025-26

1. What are the main topics covered in the NCERT Solutions for Class 11 Maths Chapter 12, Limits and Derivatives?

The NCERT Solutions for Class 11 Maths Chapter 12 provide step-by-step methods for solving problems related to the following core concepts:

  • Intuitive understanding and evaluation of limits for polynomial and rational functions.
  • Methods for handling indeterminate forms through factorization and rationalisation.
  • The concept of a derivative, defined using the first principle method.
  • Algebra of derivatives, including the sum, difference, product, and quotient rules.
  • Calculating derivatives of polynomial and trigonometric functions as per the CBSE 2025-26 syllabus.

2. How can using the NCERT Solutions for this chapter help in scoring better marks?

The NCERT Solutions for Limits and Derivatives are designed to improve scores by focusing on the correct methodology. They provide clear, step-by-step answers that align with the CBSE marking scheme. By following these solutions, students learn the precise steps required to solve problems, how to correctly apply formulas like the product and quotient rules, and how to avoid common errors, ensuring they earn full marks in exams.

3. What is the correct step-by-step method to evaluate limits of polynomial functions as per the NCERT syllabus?

To evaluate the limit of a polynomial function, the NCERT solutions guide you through this standard method:

  1. Direct Substitution: First, try substituting the value that 'x' is approaching directly into the function.
  2. Check the Result: If the result is a finite, real number, that is your answer.
  3. Factorisation: If you encounter an indeterminate form like 0/0, factorise the numerator and denominator to cancel out the common terms causing the issue, then substitute the value again.

This systematic approach ensures accuracy and is the expected method in exams.

4. How do the NCERT Solutions explain finding the derivative from the first principle?

The NCERT Solutions explain the first principle of derivatives as the formal definition of a derivative. The method involves these steps:

  • Start with the formula: f'(x) = lim (h→0) [f(x+h) - f(x)] / h.
  • Substitute the given function f(x) into the formula to find f(x+h).
  • Simplify the expression in the numerator algebraically.
  • Cancel out 'h' from the numerator and denominator.
  • Finally, apply the limit by substituting h = 0 to find the derivative, f'(x).

5. Why is understanding the concept of a limit so fundamental to learning about derivatives?

Understanding limits is fundamental because the very definition of a derivative is a limit. A derivative represents the instantaneous rate of change of a function at a specific point. This is calculated by finding the limit of the average rate of change over an infinitesimally small interval. Without a solid grasp of how limits work, the core concept of a derivative as a precise, instantaneous value remains abstract.

6. How do the solutions demonstrate the correct application of the product rule for derivatives?

The NCERT Solutions demonstrate the product rule by breaking it down systematically. For two functions, u(x) and v(x), the derivative of their product is shown as (uv)' = u'v + uv'. The solutions apply this by:

  • Clearly identifying the two functions being multiplied.
  • Finding the derivative of each function separately.
  • Substituting these components correctly into the product rule formula.
  • Simplifying the final algebraic expression to get the answer.

7. Can a limit exist at a point where the function itself is not defined? How do NCERT solutions address this?

Yes, a limit can exist even if the function is undefined at that specific point. The concept of a limit is concerned with the value a function approaches as it gets infinitesimally close to a point, not the value at the point itself. For example, for the function f(x) = (x² - 1)/(x - 1), the function is undefined at x=1. However, the limit as x approaches 1 is 2. The NCERT solutions explain this by using simplification techniques to find the value the function tends towards.

8. What is a common pitfall when applying the quotient rule, and how can the NCERT solutions help avoid it?

A very common pitfall when using the quotient rule, (u/v)' = (u'v - uv') / v², is mixing up the order of terms in the numerator. Students often incorrectly write uv' first, which leads to the wrong sign. The NCERT solutions help prevent this by consistently presenting the formula and its application in the correct order, reinforcing the right habit of starting with the derivative of the numerator (u') multiplied by the denominator (v).

9. What are indeterminate forms in limits, and what is the standard method taught in Class 11 to solve them?

An indeterminate form is an expression like 0/0 or ∞/∞, where the value of the limit cannot be determined by simple substitution. According to the Class 11 NCERT syllabus, the standard methods to solve these are:

  • Factorisation: Factoring the numerator and denominator to cancel the term causing the 0/0 form.
  • Rationalisation: Multiplying the numerator and denominator by the conjugate to simplify expressions involving square roots.
  • Using Standard Limits: Applying known trigonometric limits, such as lim (x→0) sin(x)/x = 1.

10. How should one correctly solve problems involving derivatives of trigonometric functions like sin(x) and cos(x)?

To correctly solve problems with trigonometric derivatives as per the 2025-26 CBSE guidelines, you must first memorise the standard results: the derivative of sin(x) is cos(x), and the derivative of cos(x) is -sin(x). The NCERT solutions show that when these functions are part of a larger expression, you must apply other rules like the product, quotient, or chain rule systematically along with these basic derivatives to arrive at the correct final answer.