Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives Exercise 12.1 - 2025-26

ffImage
banner

Limits And Derivatives Class 11 Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 12 Exercise 12 1, you get to discover the basics of limits and derivatives, which are the foundation for all calculus topics in maths. This exercise helps you understand how a function changes as you move closer to a certain point and introduces you to new ways of looking at how things vary. If you’re ever confused about concepts like direct substitution, indeterminate forms, or standard limit formulas, this chapter makes those ideas much easier to grasp.

toc-symbolTable of Content
toggle-arrow

With Vedantu’s clear step-by-step NCERT Solutions, you won’t just get the final answer—you’ll understand the method you need to use for exams. If you’d like to see the entire syllabus for this class, check out the Class 11 Maths syllabus anytime. You can also download the complete NCERT Solutions PDF to study offline whenever you want.


These extra explanations and solved examples mean practising limits never feels overwhelming, and you build strong problem-solving habits right from Class 11. Use these NCERT Solutions to feel confident about tackling limits, derivatives, and all related questions in your exams!


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 11 Chapter 12 - Limits and Derivatives

Exercise 12.1

1. Evaluate the Given limit.$\underset{x\to 3}{\mathop{\lim }}\,x+3$ 

Ans. Given,

 $\underset{x\to 3}{\mathop{\lim }}\,x+3$

=$3+3$

=$6$


2. Evaluate the Given limit.$\underset{x\to \pi }{\mathop{\lim }}\,\left( x-\frac{22}{7} \right)$ 

Ans. Given,

$\underset{x\to \pi }{\mathop{\lim }}\,\left( x-\frac{22}{7} \right)$

=\[\left( \pi -\frac{22}{7} \right)\]


3. Evaluate the Given limit. $\underset{r\to 1}{\mathop{\lim }}\,\pi {{r}^{2}}$

Ans. Given,

$\underset{r\to 1}{\mathop{\lim }}\,\pi {{r}^{2}}$

=\[\pi ({{1}^{2}})\]

=\[\pi \]


4. Evaluate the Given limit.\[\underset{x\to 1}{\mathop{\lim }}\,\frac{4x+3}{x-2}\]

Ans. Given,

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{4x+3}{x-2}\]

=$\frac{4(4)+3}{4-2}$ 

=$\frac{16+3}{2}$ 

=$\frac{19}{2}$ 


5. Evaluate the Given limit. \[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{10}}+{{x}^{5}}+1}{x-1}\]

Ans. Given,

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{10}}+{{x}^{5}}+1}{x-1}\]

=$\frac{{{(-1)}^{10}}+{{(-1)}^{5}}+1}{-1-1}$ 

=$\frac{1-1+1}{-2}$ 

=$-\frac{1}{2}$ 


6. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]

Put $x+1=y$ So,

$y\to 1$ as $x\to 0$ 

Than, \[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]

=\[\underset{x\to 1}{\mathop{\lim }}\,\frac{(y)_{{}}^{5}-1}{y-1}\]

Using \[\left[ \underset{x\to a}{\mathop{\lim }}\,\frac{x_{{}}^{n}-{{a}^{n}}}{x-a}=n{{a}^{n-1}} \right]\]

=${{5.1}^{5-1}}$

=$5$


7. Evaluate the Given limit. \[\underset{x\to 2}{\mathop{\lim }}\,\frac{3{{x}^{2}}-x-10}{{{x}^{2}}-4}\]

Ans. At $x=2$

The value of the given rational function takes the form \[\frac{0}{0}\] 

=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{3{{x}^{2}}-x-10}{{{x}^{2}}-4}\]

=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{(x-2)(3x+5)}{(x-2)(x+2)}\]

=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{3x+5}{x+2}\]

=\[\frac{3(2)+5}{2+2}\]

=$\frac{11}{4}$


8. Evaluate the Given limit. \[\underset{x\to 3}{\mathop{\lim }}\,\frac{{{x}^{4}}-81}{2{{x}^{2}}-5x-3}\]

Ans. At $x=2$

The value of the given rational function takes the form \[\frac{0}{0}\] 

=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{{{x}^{4}}-81}{2{{x}^{2}}-5x-3}\]

=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{(x-3)(x+3)({{x}^{2}}+9)}{(x-3)(2x+1)}\]

=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{(x+3)({{x}^{2}}+9)}{(2x+1)}\]

=\[\frac{(3+3)({{3}^{2}}+9)}{(2(3)+1)}\]

=\[\frac{6\times 18}{7}\]

=\[\frac{108}{7}\]


9. Evaluate the Given limit.\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+b}{cx+1}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+b}{cx+1}\]

=\[\frac{a(0)+b}{c(0)+1}\]

=\[b\]


10. Evaluate the Given limit.\[\underset{z\to 1}{\mathop{\lim }}\,\frac{{{z}^{\frac{1}{3}}}-1}{{{z}^{\frac{1}{6}}}-1}\]

Ans. At $z=1$

The value of the given rational function takes the form \[\frac{0}{0}\] 

Put ${{z}^{\frac{1}{6}}}=x$ So,

$z\to 1$ as $x\to 1$ 

Than,\[\underset{z\to 1}{\mathop{\lim }}\,\frac{{{z}^{\frac{1}{3}}}-1}{{{z}^{\frac{1}{6}}}-1}\]

=\[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{2}}-1}{{{x}^{{}}}-1}\]

Using \[\left[ \underset{x\to a}{\mathop{\lim }}\,\frac{x_{{}}^{n}-{{a}^{n}}}{x-a}=n{{a}^{n-1}} \right]\]

=${{2.1}^{2-1}}$

=$2$


 11. Evaluate the Given limit. \[\underset{x\to 1}{\mathop{\lim }}\,\frac{a{{x}^{2}}+bx+c}{c{{x}^{2}}+bx+a}\],\[a+b+c\ne 0\]

Ans. Given,

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{a{{x}^{2}}+bx+c}{c{{x}^{2}}+bx+a}\]

=\[\frac{a{{(1)}^{2}}+b(1)+c}{c{{(1)}^{2}}+b(1)+a}\]

=\[\frac{a+b+c}{c+b+a}\]

=$1$                    \[(a+b+c\ne 0)\]


12. Evaluate the Given limit. \[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]

Ans. Given,

\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]

At $x=-2$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]=\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\left( \frac{2+x}{2x} \right)}{x+2}\]

=\[\underset{x\to -2}{\mathop{\lim }}\,\frac{1}{2x}\]

=\[\frac{1}{2(-2)}\]

=\[-\frac{1}{4}\]


13. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\times \frac{ax}{ax}\]

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{bx} \right)\times \frac{a}{b}\]

=\[\frac{a}{b}\underset{ax\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{bx} \right)\]

$x\to 0\Rightarrow ax\to 0$ 

=\[\frac{a}{b}\times 1\]\[\]         $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right) \right]$ 

=\[\frac{a}{b}\]


14. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx},a,b\ne 0\]

Ans.Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx},a,b\ne 0\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{\sin ax}{ax} \right)\times ax}{\left( \frac{\sin ax}{ax} \right)\times bx}\]

=\[\frac{a}{b}\times \frac{\underset{ax\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{ax} \right)}{\underset{bx\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{ax} \right)}\]         $\left[ \begin{align} & x\to 0\Rightarrow ax\to 0 \\ & x\to 0\Rightarrow bx\to 0 \\ \end{align} \right]$

=\[\frac{a}{b}\times \frac{1}{1}\]                   $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$

=\[\frac{a}{b}\]


15. Evaluate the Given limit. \[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}\]

Ans. Given,

\[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}\]

$\left[ x\to \pi \Rightarrow (\pi -x)\to 0 \right]$

\[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}=\frac{1}{\pi }\underset{(\pi -x)\to 0}{\mathop{\lim }}\,\frac{\sin (\pi -x)}{(\pi -x)}\]

$=\frac{1}{\pi }\times 1$                      $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$

$=\frac{1}{\pi }$


16. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{cosx}{\pi -x}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\operatorname{cosx}}{\pi -x}\]

=\[\frac{\cos 0}{\pi -0}\]

=\[\frac{1}{\pi }\]


17. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}=\underset{x\to 0}{\mathop{\lim }}\,\frac{1-2{{\sin }^{2}}x-1}{1-2{{\sin }^{2}}\frac{x}{2}-1}\]

=\[\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}x}{{{\sin }^{2}}\frac{x}{2}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times {{x}^{2}}}{\left( \frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)\times \frac{{{x}^{2}}}{4}}\]

=\[4\frac{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)}\]

=\[4\frac{{{\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)}^{2}}^{{}}}{{{\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)}^{2}}}\]

$\left[ x\to 0\Rightarrow \frac{x}{2}\to 0 \right]$

=\[4\frac{{{1}^{2}}^{{}}}{{{1}^{2}}}\]         $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$

=\[4\]   


18. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}\]

Ans.Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}=\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\frac{x(a+\cos x)}{\sin x}\]

\[\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{\sin x} \right)\times \underset{x\to 0}{\mathop{\lim }}\,\left( a+\cos x \right)\]

=\[\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin x}{x} \right)} \right)\times \underset{x\to 0}{\mathop{\lim }}\,\left( a+\cos x \right)\]

=\[\frac{1}{b}\times \left( a+\cos 0 \right)\]               $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$

  =\[\frac{a+1}{b}\]         


19. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,x\sec x\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,x\sec x\]

  =\[\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{\cos x}\]        

  =\[\frac{0}{\cos 0}\]

=\[\frac{0}{1}\]

=\[0\]


20. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax+bx}{ax+\sin bx}\]\[a,b,a+b\ne 0\]

Ans. At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax+bx}{ax+\sin bx}\]

  =\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{\sin ax}{ax} \right)ax+bx}{ax+bx\left( \frac{\sin bx}{bx} \right)}\]        

  =\[\frac{\left( \underset{x\to \infty }{\mathop{\lim }}\,\frac{\sin ax}{ax} \right)\times \underset{x\to 0}{\mathop{\lim }}\,(ax)+\underset{x\to 0}{\mathop{\lim }}\,(bx)}{\underset{x\to 0}{\mathop{\lim }}\,ax+\underset{x\to 0}{\mathop{\lim }}\,bx\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{\sin bx}{bx} \right)}\]

\[\left[ x\to \pi \Rightarrow ax\to 0 \right]\] and \[\left[ bx\to 0 \right]\]

  =\[\frac{\underset{x\to 0}{\mathop{\lim }}\,(ax)+\underset{x\to 0}{\mathop{\lim }}\,(bx)}{\underset{x\to 0}{\mathop{\lim }}\,ax+\underset{x\to 0}{\mathop{\lim }}\,bx}\]         $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$

  =\[\frac{\underset{x\to 0}{\mathop{\lim }}\,(ax+bx)}{\underset{x\to 0}{\mathop{\lim }}\,(ax+bx)}\]   

  =\[\underset{x\to 0}{\mathop{\lim }}\,(1)\]         

  =\[1\]         


21. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,(\operatorname{cosecx}-cotx)\]

Ans. At $x=0$

The value of the given rational function takes the form \[\infty \to \infty \] 

\[\underset{x\to 0}{\mathop{\lim }}\,(\operatorname{cosecx}-cotx)\]

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1}{\sin x}-\frac{\cos x}{\sin x} \right)\]         

  =\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1-\cos x}{\sin x} \right)\]       

  =\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{1-\cos x}{x} \right)}{\left( \frac{\sin x}{x} \right)}\]         

  =\[\frac{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1-\cos x}{x} \right)}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin x}{x} \right)}\]   

$\left[ \underset{y\to 0}{\mathop{\lim }}\,\frac{1-\cos x}{x}=0 \right]$ and $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$

  =\[\frac{0}{1}\]        

  =\[0\]               


22. Evaluate the Given limit. \[\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}\]

Ans. Given, 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}\]

At $x=\frac{\pi }{2}$

The value of the given rational function takes the form \[\frac{0}{0}\] 

Put $x-\frac{\pi }{2}=y$ 

So,\[\left[ x\to \frac{\pi }{2},y\to 0 \right]\]

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}=\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan 2\left( y+\frac{\pi }{2} \right)}{y}\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan (\pi +2y)}{y}\]       

  =\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan 2y}{y}\]    \[\left[ \tan (\pi +2y)=\tan 2y \right]\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\sin 2y}{y\cos 2y}\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\sin 2y}{2y}\times \frac{2}{\cos 2y} \right)\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\sin 2y}{2y} \right)\times \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{2}{\cos 2y} \right)\]  \[\left[ y\to 0\Rightarrow 2y\to 0 \right]\]

  =\[1\times \frac{2}{\cos 0}\]    \[\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]\]

  =\[1\times \frac{2}{1}\]

  =\[2\]


23. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$and $\underset{x\to 1}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & 2x+3 \\ & 3(x+1) \\ \end{align} \right.\]  $\begin{align} & x\le 0 \\ & x>0 \\ \end{align}$

Ans. Given.

\[f(x)=\left\{ \begin{align} & 2x+3 \\ & 3(x+1) \\ \end{align} \right.\]    $\begin{align} & x\le 0 \\ & x>0 \\ \end{align}$

\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\left[ 2x+3 \right]\] 

  =\[2(0)+3=3\]

\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\left[ 3x+1 \right]\] 

  =\[3(0+1)=3\]

Therefore,

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,f(x)=3$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,(x+1)=3(1+1)=6$

Therefore,

$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(x)=6$


24. Find $\underset{x\to 1}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & {{x}^{2}}-1 \\ & -x-1 \\ \end{align} \right.\]   $\begin{align} & x\le 1 \\ & x>1 \\ \end{align}$

Ans. Given, 

\[f(x)=\left\{ \begin{align} & {{x}^{2}}-1 \\ & -x-1 \\ \end{align} \right.\]     $$\begin{align} & x\le 1 \\ & x>1 \\ \end{align}$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,({{x}^{2}}-1)={{1}^{2}}-1=1-1=0$

So, it is observed that 

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)$ 

Hence, $\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.


25. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & \frac{\left| x \right|}{x} \\ & 0 \\ \end{align} \right.\]    $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$

Ans. Given

\[f(x)=\left\{ \begin{align} & \frac{\left| x \right|}{x} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \frac{\left| x \right|}{x} \right]$

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{-x}{x} \right)\]    when x is negative, $\left| x \right|=-x$ 

=\[\underset{x\to 0}{\mathop{\lim }}\,(-1)\]

=\[-1\]

$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \frac{\left| x \right|}{x} \right]$     

=$\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{x} \right)$

 when x is positive, $\left| x \right|=x$ 

=$\underset{x\to 0}{\mathop{\lim }}\,(1)$

=\[1\]

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$

Hence, $\underset{x\to {{0}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.


26. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & \frac{x}{\left| x \right|} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$

Ans. Given

\[f(x)=\left\{ \begin{align} & \frac{x}{\left| x \right|} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$ 

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \frac{x}{\left| x \right|} \right]$

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{-x}{x} \right)\]    when x is negative, $\left| x \right|=-x$ 

=\[\underset{x\to 0}{\mathop{\lim }}\,(-1)\]

=\[-1\]

 $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \frac{x}{\left| x \right|} \right]$   
=$\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{x} \right)$

 when x is positive, $\left| x \right|=x$ 

=\[\underset{x\to 0}{\mathop{\lim }}\,(1)\]

=\[1\]

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$

Hence, $\underset{x\to {{0}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.


27. Find $\underset{x\to 5}{\mathop{\lim }}\,f(x),$ where $f(x)=\left| x \right|-5$ 

Ans. Given,

 $f(x)=\left| x \right|-5$

$\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,(\left| x \right|-5)$ 

= $\underset{x\to 5}{\mathop{\lim }}\,(x-5)$    when x is positive, $\left| x \right|=x$ 

= $5-5$ 

= $0$ 

$\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,(\left| x \right|-5)$ 

= $\underset{x\to 5}{\mathop{\lim }}\,(x-5)$ 

when x is positive, $\left| x \right|=x$ 

= $5-5$ 

= $0$ 

$\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f(x)$

Hence, $\underset{x\to 5}{\mathop{\lim }}\,f(x)=0$ 


28. Suppose $f(x)=\left\{ \begin{align} & a+bx \\ & 4 \\ & b-ax \\ \end{align} \right.$   $\begin{align} & x<0 \\ & x=1 \\ & x>1 \\ \end{align}$and if $\underset{x\to 1}{\mathop{\lim }}\,f(x)=f(1)$what are possible values of a and b?

Ans. The given function is

$f(x)=\left\{ \begin{align} & a+bx \\ & 4 \\ & b-ax \\ \end{align} \right.$ $\begin{align} & x<0 \\ & x=1 \\ & x>1 \\ \end{align}$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(ax+bx)=a+b$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(b-ax)=b-a$

$f(1)=4$

Given

$\underset{x\to 1}{\mathop{\lim }}\,f(x)=f(1)$ 

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,f(x)=f(1)$

$a+b=4$and $b-a=4$

On solving,we get

$a=0$and $b=4$


29. Let a1,a2,……an be fixed real number and define a fuction

$f(x)=(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})$ 

What is $\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)$ ? For some a$\ne $ a1, a2,…..,an. Compute $\underset{x\to a}{\mathop{\lim }}\,f(x)$.

Ans. Given,

$f(x)=(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})$

$\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,[(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})]$

=\[({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})=0\]

Therefore,

$\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)=0$

Now, $\underset{x\to a}{\mathop{\lim }}\,f(x)=\underset{x\to a}{\mathop{\lim }}\,[(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})]$

=\[({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})\]

Therefore,

$\underset{x\to a}{\mathop{\lim }}\,f(x)=({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})$


30. If \[f(x)=\left\{ \begin{align} & \left| x \right|+1 \\ & 0 \\ & \left| x \right|-1 \\ \end{align} \right.\] $\begin{align} & x<0 \\ & x=0 \\ & x>1 \\ \end{align}$

For what value (s) of does $\underset{x\to a}{\mathop{\lim }}\,f(x)$  exists? 

Ans. Given,

 \[f(x)=\left\{ \begin{align} & \left| x \right|+1 \\ & 0 \\ & \left| x \right|-1 \\ \end{align} \right.\] $\begin{align} & x<0 \\ & x=0 \\ & x>1 \\ \end{align}$ 

When $a=0$ 

=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( \left| x \right|+1 \right)\]

=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -x+1 \right)\]     when x is negative, $\left| x \right|=-x$ 

=$0+1$

=$1$ 

=\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \left| x \right|+1 \right)\]

=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( x-1 \right)\]     when x is positive, $\left| x \right|=x$ 

=$0-1$

=$-1$ 

Here, $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$ 

$\underset{x\to 0}{\mathop{\lim }}\,f(x)$ does not exist.

When\[\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,(\left| x \right|+1)\] $a<0$

\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(\left| x \right|+1)\]

=\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(-x+1)\]           $[x<a<0\Rightarrow \left| x \right|=-x]$

=\[-a+1\]

$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=-a+1$ 

Thus, limit exists at $x=a$, where \[a<0\]

When \[a>0\]

$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(\left| x \right|+1)$

=$\underset{x\to a}{\mathop{\lim }}\,(-x-1)$                         $[0<x<a\Rightarrow \left| x \right|=x]$

=$-a-1$

$\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,(\left| x \right|+1)$

=$\underset{x\to a}{\mathop{\lim }}\,(-x-1)$                         $[0<x<a\Rightarrow \left| x \right|=x]$

=$a-1$

$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=a-1$

Thus, limit exists at $x=a$, where \[a>0\]

Thus $\underset{x\to a}{\mathop{\lim }}\,f(x)$ exists for all $a\ne 0$$\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi $.


31. If function f(x) satisfies, \[\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi \], evaluate $\underset{x\to 1}{\mathop{\lim }}\,f(x)$

Ans. Given, 

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi \]

= $\frac{\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)}{\underset{x\to 1}{\mathop{\lim }}\,({{x}^{2}}-1)}=\pi $

= $\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=\pi \underset{x\to 1}{\mathop{\lim }}\,({{x}^{2}}-1)$

=$\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=\pi ({{1}^{2}}-1)$

=$\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=0$

=$\underset{x\to 1}{\mathop{\lim }}\,f(x)-\underset{x\to 1}{\mathop{\lim }}\,2=0$

=$\underset{x\to 1}{\mathop{\lim }}\,f(x)-2=0$

$\underset{x\to 1}{\mathop{\lim }}\,f(x)=2$


32. If $f(x)=\left\{ \begin{align} & m{{x}^{2}}+n \\ & nx+m \\ & n{{x}^{3}}+m \\ \end{align} \right.$ $\begin{align} & x<0 \\ & 0\le x\le 1 \\ & x>1 \\ \end{align}$

For what integers m and n does $\underset{x\to 0}{\mathop{\lim }}\,f(x)$ and $\underset{x\to 1}{\mathop{\lim }}\,f(x)$ exists?

Ans. Given,  

$f(x)=\left\{ \begin{align} & m{{x}^{2}}+n \\ & nx+m \\ & n{{x}^{3}}+m \\ \end{align} \right.$ $\begin{align} & x<0 \\ & 0\le x\le 1 \\ & x>1 \\ \end{align}$\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,(m{{x}^{2}}+n)\]

=$m{{(0)}^{2}}+n$

=$n$

$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,(nx+m)$

=$n{{(0)}^{{}}}+m$

=$m$

Thus, $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$exists if m=n

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,(nx+m)$

=$n(1)+m$

=$m+n$

$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,(n{{x}^{3}}+m)$

=$n{{(1)}^{3}}+m$

=$m+n$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(x)$

Thus, $\underset{x\to 1}{\mathop{\lim }}\,f(x)$exists for any internal value of  m and n


Conclusion 

Calculating limits for polynomial and rational functions involves substitution and simplifying expressions. Understanding Left Hand Limits (LHL) and Right Hand Limits (RHL) is crucial for analysing function behaviour at specific points. Limits for trigonometric functions uses geometric proof of the important inequalities relating trigonometric functions. The Sandwich Theorem helps find limits by bounding a function between two known limits. Focus on mastering these methods, as they are fundamental for calculus. Previous year question papers typically have 3-4 questions on limits, emphasizing their importance in exams. Practice these concepts thoroughly to excel in your studies.


Class 11 Maths Chapter 12: Exercises Breakdown

Exercise

Number of Questions

Exercise 12.2

11 Questions and Solutions

Miscellaneous Exercise

30 Questions and Solutions


CBSE Class 11 Maths Chapter 12 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives Exercise 12.1 - 2025-26

1. What is the correct step-by-step method to solve questions in NCERT Solutions for Class 11 Maths Chapter 12?

The correct method for solving problems in Chapter 12, as per the CBSE pattern, involves a systematic approach:

  • Identify the function type: Determine if it is a polynomial, rational, or trigonometric function.
  • Direct Substitution: First, try to substitute the limiting value directly into the function.
  • Check for Indeterminate Forms: If you get a form like 0/0 or ∞/∞, you must simplify further.
  • Simplify the expression: Use techniques like factorisation, rationalisation, or standard limit formulas.
  • Re-substitute the limit: Once simplified, substitute the value of the limit again to find the final answer.

2. How do you solve a limit problem when it results in an indeterminate form like 0/0?

When direct substitution leads to an indeterminate form (0/0), you must use algebraic manipulation as shown in the NCERT solutions. The primary methods are:

  • Factorisation: Factor the numerator and denominator to cancel out the common term causing the 0/0 form.
  • Rationalisation: Multiply the numerator and denominator by the conjugate if the expression involves square roots.
  • Using Standard Limits: Apply standard results like lim (x→0) sin(x)/x = 1 or lim (x→a) (xⁿ - aⁿ)/(x - a) = naⁿ⁻¹.

3. Why is it important to show every step while solving limit problems as per the CBSE pattern?

Showing every step is crucial because, in CBSE board exams, marks are awarded for the correct methodology, not just the final answer. A step-by-step solution demonstrates your understanding of the process, including how you identified an indeterminate form, which algebraic technique you applied (like factorisation or rationalisation), and how you used the correct limit laws. This approach also helps minimise calculation errors and ensures full marks.

4. What are some common mistakes to avoid when using NCERT Solutions for Limits and Derivatives?

Students often make a few common errors when solving problems from Chapter 12. Be careful to avoid these:

  • Incorrect Substitution: Directly substituting the limit value into an indeterminate form without simplification.
  • Algebraic Errors: Making mistakes during factorisation or rationalisation.
  • Wrong Formula Application: Using a standard limit formula in a situation where it doesn't apply.
  • Ignoring the Limit Notation: Forgetting to write 'lim' in each step until the value has been substituted.

5. How do the NCERT solutions for Chapter 12 help in understanding the First Principle of Derivatives?

The NCERT solutions are essential for understanding the First Principle of Derivatives because they show the practical application of the formula f'(x) = lim (h→0) [f(x+h) – f(x)]/h. By following the detailed steps for different functions (e.g., polynomial, trigonometric), you learn how to correctly substitute f(x+h), simplify the complex expression, and evaluate the final limit. This bridges the gap between the abstract formula and its concrete application.

6. Are the methods used in these NCERT Solutions for Class 11 Maths Chapter 12 updated for the 2025-26 CBSE syllabus?

Yes, all solution methods are fully aligned with the latest 2025-26 CBSE syllabus for Class 11 Maths. The step-by-step procedures for calculating limits, handling indeterminate forms, and finding derivatives from the first principle strictly follow the NCERT textbook and official curriculum guidelines, ensuring they are relevant for your exams.

7. What is the difference between finding the value of a function at a point and finding its limit at that point?

The value of a function, f(a), is its exact output when the input is precisely 'a'. In contrast, the limit of a function as x approaches 'a' describes the value that the function gets infinitesimally close to. The function does not need to be defined at 'a' for its limit to exist. The NCERT solutions for problems with indeterminate forms clearly illustrate this, as we find the limit at a point where the function itself is undefined.

8. How does mastering the problem-solving techniques in Chapter 12 lay the foundation for calculus in Class 12?

The techniques in Chapter 12 are foundational for Class 12 calculus. Mastering how to evaluate limits is a direct prerequisite for understanding continuity and differentiability. Furthermore, the concept of a derivative, introduced here through the first principle, is the basis for all of differential calculus, including topics like the application of derivatives, maxima and minima, and increasing and decreasing functions.

9. How are the concepts of limits and derivatives related in NCERT Class 11 Maths Chapter 12?

The concepts are intrinsically linked: the derivative of a function is defined as a limit. Specifically, the derivative represents the instantaneous rate of change, which is calculated by finding the limit of the average rate of change over an infinitesimally small interval. The 'first principle of derivatives' is the formal expression of this limit, making the understanding of limits a mandatory first step before one can calculate derivatives.

10. What is the best way to use the NCERT Solutions for Chapter 12 to improve problem-solving skills?

To effectively improve your skills, first attempt to solve the NCERT exercise questions on your own. Afterwards, use the provided solutions not just to verify your final answer, but to compare your method step-by-step. Pay close attention to the logic used for simplification and the application of formulas. This helps identify and correct conceptual gaps rather than just memorising the solutions.