Limits And Derivatives Class 11 Questions and Answers - Free PDF Download
In NCERT Solutions Class 11 Maths Chapter 12 Exercise 12 1, you get to discover the basics of limits and derivatives, which are the foundation for all calculus topics in maths. This exercise helps you understand how a function changes as you move closer to a certain point and introduces you to new ways of looking at how things vary. If you’re ever confused about concepts like direct substitution, indeterminate forms, or standard limit formulas, this chapter makes those ideas much easier to grasp.
Table of ContentWith Vedantu’s clear step-by-step NCERT Solutions, you won’t just get the final answer—you’ll understand the method you need to use for exams. If you’d like to see the entire syllabus for this class, check out the Class 11 Maths syllabus anytime. You can also download the complete NCERT Solutions PDF to study offline whenever you want.
These extra explanations and solved examples mean practising limits never feels overwhelming, and you build strong problem-solving habits right from Class 11. Use these NCERT Solutions to feel confident about tackling limits, derivatives, and all related questions in your exams!
Access NCERT Solutions for Maths Class 11 Chapter 12 - Limits and Derivatives
Exercise 12.1
1. Evaluate the Given limit.$\underset{x\to 3}{\mathop{\lim }}\,x+3$
Ans. Given,
$\underset{x\to 3}{\mathop{\lim }}\,x+3$
=$3+3$
=$6$
2. Evaluate the Given limit.$\underset{x\to \pi }{\mathop{\lim }}\,\left( x-\frac{22}{7} \right)$
Ans. Given,
$\underset{x\to \pi }{\mathop{\lim }}\,\left( x-\frac{22}{7} \right)$
=\[\left( \pi -\frac{22}{7} \right)\]
3. Evaluate the Given limit. $\underset{r\to 1}{\mathop{\lim }}\,\pi {{r}^{2}}$
Ans. Given,
$\underset{r\to 1}{\mathop{\lim }}\,\pi {{r}^{2}}$
=\[\pi ({{1}^{2}})\]
=\[\pi \]
4. Evaluate the Given limit.\[\underset{x\to 1}{\mathop{\lim }}\,\frac{4x+3}{x-2}\]
Ans. Given,
\[\underset{x\to 1}{\mathop{\lim }}\,\frac{4x+3}{x-2}\]
=$\frac{4(4)+3}{4-2}$
=$\frac{16+3}{2}$
=$\frac{19}{2}$
5. Evaluate the Given limit. \[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{10}}+{{x}^{5}}+1}{x-1}\]
Ans. Given,
\[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{10}}+{{x}^{5}}+1}{x-1}\]
=$\frac{{{(-1)}^{10}}+{{(-1)}^{5}}+1}{-1-1}$
=$\frac{1-1+1}{-2}$
=$-\frac{1}{2}$
6. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]
Ans. Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]
Put $x+1=y$ So,
$y\to 1$ as $x\to 0$
Than, \[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]
=\[\underset{x\to 1}{\mathop{\lim }}\,\frac{(y)_{{}}^{5}-1}{y-1}\]
Using \[\left[ \underset{x\to a}{\mathop{\lim }}\,\frac{x_{{}}^{n}-{{a}^{n}}}{x-a}=n{{a}^{n-1}} \right]\]
=${{5.1}^{5-1}}$
=$5$
7. Evaluate the Given limit. \[\underset{x\to 2}{\mathop{\lim }}\,\frac{3{{x}^{2}}-x-10}{{{x}^{2}}-4}\]
Ans. At $x=2$
The value of the given rational function takes the form \[\frac{0}{0}\]
=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{3{{x}^{2}}-x-10}{{{x}^{2}}-4}\]
=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{(x-2)(3x+5)}{(x-2)(x+2)}\]
=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{3x+5}{x+2}\]
=\[\frac{3(2)+5}{2+2}\]
=$\frac{11}{4}$
8. Evaluate the Given limit. \[\underset{x\to 3}{\mathop{\lim }}\,\frac{{{x}^{4}}-81}{2{{x}^{2}}-5x-3}\]
Ans. At $x=2$
The value of the given rational function takes the form \[\frac{0}{0}\]
=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{{{x}^{4}}-81}{2{{x}^{2}}-5x-3}\]
=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{(x-3)(x+3)({{x}^{2}}+9)}{(x-3)(2x+1)}\]
=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{(x+3)({{x}^{2}}+9)}{(2x+1)}\]
=\[\frac{(3+3)({{3}^{2}}+9)}{(2(3)+1)}\]
=\[\frac{6\times 18}{7}\]
=\[\frac{108}{7}\]
9. Evaluate the Given limit.\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+b}{cx+1}\]
Ans. Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+b}{cx+1}\]
=\[\frac{a(0)+b}{c(0)+1}\]
=\[b\]
10. Evaluate the Given limit.\[\underset{z\to 1}{\mathop{\lim }}\,\frac{{{z}^{\frac{1}{3}}}-1}{{{z}^{\frac{1}{6}}}-1}\]
Ans. At $z=1$
The value of the given rational function takes the form \[\frac{0}{0}\]
Put ${{z}^{\frac{1}{6}}}=x$ So,
$z\to 1$ as $x\to 1$
Than,\[\underset{z\to 1}{\mathop{\lim }}\,\frac{{{z}^{\frac{1}{3}}}-1}{{{z}^{\frac{1}{6}}}-1}\]
=\[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{2}}-1}{{{x}^{{}}}-1}\]
Using \[\left[ \underset{x\to a}{\mathop{\lim }}\,\frac{x_{{}}^{n}-{{a}^{n}}}{x-a}=n{{a}^{n-1}} \right]\]
=${{2.1}^{2-1}}$
=$2$
11. Evaluate the Given limit. \[\underset{x\to 1}{\mathop{\lim }}\,\frac{a{{x}^{2}}+bx+c}{c{{x}^{2}}+bx+a}\],\[a+b+c\ne 0\]
Ans. Given,
\[\underset{x\to 1}{\mathop{\lim }}\,\frac{a{{x}^{2}}+bx+c}{c{{x}^{2}}+bx+a}\]
=\[\frac{a{{(1)}^{2}}+b(1)+c}{c{{(1)}^{2}}+b(1)+a}\]
=\[\frac{a+b+c}{c+b+a}\]
=$1$ \[(a+b+c\ne 0)\]
12. Evaluate the Given limit. \[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]
Ans. Given,
\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]
At $x=-2$
The value of the given rational function takes the form \[\frac{0}{0}\]
\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]=\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\left( \frac{2+x}{2x} \right)}{x+2}\]
=\[\underset{x\to -2}{\mathop{\lim }}\,\frac{1}{2x}\]
=\[\frac{1}{2(-2)}\]
=\[-\frac{1}{4}\]
13. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\]
Ans. Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\]
At $x=0$
The value of the given rational function takes the form \[\frac{0}{0}\]
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\times \frac{ax}{ax}\]
=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{bx} \right)\times \frac{a}{b}\]
=\[\frac{a}{b}\underset{ax\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{bx} \right)\]
$x\to 0\Rightarrow ax\to 0$
=\[\frac{a}{b}\times 1\]\[\] $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right) \right]$
=\[\frac{a}{b}\]
14. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx},a,b\ne 0\]
Ans.Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx},a,b\ne 0\]
At $x=0$
The value of the given rational function takes the form \[\frac{0}{0}\]
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{\sin ax}{ax} \right)\times ax}{\left( \frac{\sin ax}{ax} \right)\times bx}\]
=\[\frac{a}{b}\times \frac{\underset{ax\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{ax} \right)}{\underset{bx\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{ax} \right)}\] $\left[ \begin{align} & x\to 0\Rightarrow ax\to 0 \\ & x\to 0\Rightarrow bx\to 0 \\ \end{align} \right]$
=\[\frac{a}{b}\times \frac{1}{1}\] $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$
=\[\frac{a}{b}\]
15. Evaluate the Given limit. \[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}\]
Ans. Given,
\[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}\]
$\left[ x\to \pi \Rightarrow (\pi -x)\to 0 \right]$
\[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}=\frac{1}{\pi }\underset{(\pi -x)\to 0}{\mathop{\lim }}\,\frac{\sin (\pi -x)}{(\pi -x)}\]
$=\frac{1}{\pi }\times 1$ $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$
$=\frac{1}{\pi }$
16. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{cosx}{\pi -x}\]
Ans. Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\operatorname{cosx}}{\pi -x}\]
=\[\frac{\cos 0}{\pi -0}\]
=\[\frac{1}{\pi }\]
17. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}\]
Ans. Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}\]
At $x=0$
The value of the given rational function takes the form \[\frac{0}{0}\]
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}=\underset{x\to 0}{\mathop{\lim }}\,\frac{1-2{{\sin }^{2}}x-1}{1-2{{\sin }^{2}}\frac{x}{2}-1}\]
=\[\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}x}{{{\sin }^{2}}\frac{x}{2}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times {{x}^{2}}}{\left( \frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)\times \frac{{{x}^{2}}}{4}}\]
=\[4\frac{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)}\]
=\[4\frac{{{\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)}^{2}}^{{}}}{{{\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)}^{2}}}\]
$\left[ x\to 0\Rightarrow \frac{x}{2}\to 0 \right]$
=\[4\frac{{{1}^{2}}^{{}}}{{{1}^{2}}}\] $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$
=\[4\]
18. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}\]
Ans.Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}\]
At $x=0$
The value of the given rational function takes the form \[\frac{0}{0}\]
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}=\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\frac{x(a+\cos x)}{\sin x}\]
\[\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{\sin x} \right)\times \underset{x\to 0}{\mathop{\lim }}\,\left( a+\cos x \right)\]
=\[\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin x}{x} \right)} \right)\times \underset{x\to 0}{\mathop{\lim }}\,\left( a+\cos x \right)\]
=\[\frac{1}{b}\times \left( a+\cos 0 \right)\] $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$
=\[\frac{a+1}{b}\]
19. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,x\sec x\]
Ans. Given,
\[\underset{x\to 0}{\mathop{\lim }}\,x\sec x\]
=\[\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{\cos x}\]
=\[\frac{0}{\cos 0}\]
=\[\frac{0}{1}\]
=\[0\]
20. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax+bx}{ax+\sin bx}\]\[a,b,a+b\ne 0\]
Ans. At $x=0$
The value of the given rational function takes the form \[\frac{0}{0}\]
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax+bx}{ax+\sin bx}\]
=\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{\sin ax}{ax} \right)ax+bx}{ax+bx\left( \frac{\sin bx}{bx} \right)}\]
=\[\frac{\left( \underset{x\to \infty }{\mathop{\lim }}\,\frac{\sin ax}{ax} \right)\times \underset{x\to 0}{\mathop{\lim }}\,(ax)+\underset{x\to 0}{\mathop{\lim }}\,(bx)}{\underset{x\to 0}{\mathop{\lim }}\,ax+\underset{x\to 0}{\mathop{\lim }}\,bx\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{\sin bx}{bx} \right)}\]
\[\left[ x\to \pi \Rightarrow ax\to 0 \right]\] and \[\left[ bx\to 0 \right]\]
=\[\frac{\underset{x\to 0}{\mathop{\lim }}\,(ax)+\underset{x\to 0}{\mathop{\lim }}\,(bx)}{\underset{x\to 0}{\mathop{\lim }}\,ax+\underset{x\to 0}{\mathop{\lim }}\,bx}\] $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$
=\[\frac{\underset{x\to 0}{\mathop{\lim }}\,(ax+bx)}{\underset{x\to 0}{\mathop{\lim }}\,(ax+bx)}\]
=\[\underset{x\to 0}{\mathop{\lim }}\,(1)\]
=\[1\]
21. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,(\operatorname{cosecx}-cotx)\]
Ans. At $x=0$
The value of the given rational function takes the form \[\infty \to \infty \]
\[\underset{x\to 0}{\mathop{\lim }}\,(\operatorname{cosecx}-cotx)\]
=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1}{\sin x}-\frac{\cos x}{\sin x} \right)\]
=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1-\cos x}{\sin x} \right)\]
=\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{1-\cos x}{x} \right)}{\left( \frac{\sin x}{x} \right)}\]
=\[\frac{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1-\cos x}{x} \right)}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin x}{x} \right)}\]
$\left[ \underset{y\to 0}{\mathop{\lim }}\,\frac{1-\cos x}{x}=0 \right]$ and $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$
=\[\frac{0}{1}\]
=\[0\]
22. Evaluate the Given limit. \[\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}\]
Ans. Given,
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}\]
At $x=\frac{\pi }{2}$
The value of the given rational function takes the form \[\frac{0}{0}\]
Put $x-\frac{\pi }{2}=y$
So,\[\left[ x\to \frac{\pi }{2},y\to 0 \right]\]
\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}=\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan 2\left( y+\frac{\pi }{2} \right)}{y}\]
=\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan (\pi +2y)}{y}\]
=\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan 2y}{y}\] \[\left[ \tan (\pi +2y)=\tan 2y \right]\]
=\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\sin 2y}{y\cos 2y}\]
=\[\underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\sin 2y}{2y}\times \frac{2}{\cos 2y} \right)\]
=\[\underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\sin 2y}{2y} \right)\times \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{2}{\cos 2y} \right)\] \[\left[ y\to 0\Rightarrow 2y\to 0 \right]\]
=\[1\times \frac{2}{\cos 0}\] \[\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]\]
=\[1\times \frac{2}{1}\]
=\[2\]
23. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$and $\underset{x\to 1}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & 2x+3 \\ & 3(x+1) \\ \end{align} \right.\] $\begin{align} & x\le 0 \\ & x>0 \\ \end{align}$
Ans. Given.
\[f(x)=\left\{ \begin{align} & 2x+3 \\ & 3(x+1) \\ \end{align} \right.\] $\begin{align} & x\le 0 \\ & x>0 \\ \end{align}$
\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\left[ 2x+3 \right]\]
=\[2(0)+3=3\]
\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\left[ 3x+1 \right]\]
=\[3(0+1)=3\]
Therefore,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,f(x)=3$
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,(x+1)=3(1+1)=6$
Therefore,
$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(x)=6$
24. Find $\underset{x\to 1}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & {{x}^{2}}-1 \\ & -x-1 \\ \end{align} \right.\] $\begin{align} & x\le 1 \\ & x>1 \\ \end{align}$
Ans. Given,
\[f(x)=\left\{ \begin{align} & {{x}^{2}}-1 \\ & -x-1 \\ \end{align} \right.\] $$\begin{align} & x\le 1 \\ & x>1 \\ \end{align}$
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,({{x}^{2}}-1)={{1}^{2}}-1=1-1=0$
So, it is observed that
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)$
Hence, $\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.
25. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & \frac{\left| x \right|}{x} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$
Ans. Given
\[f(x)=\left\{ \begin{align} & \frac{\left| x \right|}{x} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \frac{\left| x \right|}{x} \right]$
=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{-x}{x} \right)\] when x is negative, $\left| x \right|=-x$
=\[\underset{x\to 0}{\mathop{\lim }}\,(-1)\]
=\[-1\]
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \frac{\left| x \right|}{x} \right]$
=$\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{x} \right)$
when x is positive, $\left| x \right|=x$
=$\underset{x\to 0}{\mathop{\lim }}\,(1)$
=\[1\]
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$
Hence, $\underset{x\to {{0}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.
26. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & \frac{x}{\left| x \right|} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$
Ans. Given
\[f(x)=\left\{ \begin{align} & \frac{x}{\left| x \right|} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \frac{x}{\left| x \right|} \right]$
=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{-x}{x} \right)\] when x is negative, $\left| x \right|=-x$
=\[\underset{x\to 0}{\mathop{\lim }}\,(-1)\]
=\[-1\]
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \frac{x}{\left| x \right|} \right]$
=$\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{x} \right)$
when x is positive, $\left| x \right|=x$
=\[\underset{x\to 0}{\mathop{\lim }}\,(1)\]
=\[1\]
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$
Hence, $\underset{x\to {{0}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.
27. Find $\underset{x\to 5}{\mathop{\lim }}\,f(x),$ where $f(x)=\left| x \right|-5$
Ans. Given,
$f(x)=\left| x \right|-5$
$\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,(\left| x \right|-5)$
= $\underset{x\to 5}{\mathop{\lim }}\,(x-5)$ when x is positive, $\left| x \right|=x$
= $5-5$
= $0$
$\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,(\left| x \right|-5)$
= $\underset{x\to 5}{\mathop{\lim }}\,(x-5)$
when x is positive, $\left| x \right|=x$
= $5-5$
= $0$
$\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f(x)$
Hence, $\underset{x\to 5}{\mathop{\lim }}\,f(x)=0$
28. Suppose $f(x)=\left\{ \begin{align} & a+bx \\ & 4 \\ & b-ax \\ \end{align} \right.$ $\begin{align} & x<0 \\ & x=1 \\ & x>1 \\ \end{align}$and if $\underset{x\to 1}{\mathop{\lim }}\,f(x)=f(1)$what are possible values of a and b?
Ans. The given function is
$f(x)=\left\{ \begin{align} & a+bx \\ & 4 \\ & b-ax \\ \end{align} \right.$ $\begin{align} & x<0 \\ & x=1 \\ & x>1 \\ \end{align}$
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(ax+bx)=a+b$
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(b-ax)=b-a$
$f(1)=4$
Given
$\underset{x\to 1}{\mathop{\lim }}\,f(x)=f(1)$
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,f(x)=f(1)$
$a+b=4$and $b-a=4$
On solving,we get
$a=0$and $b=4$
29. Let a1,a2,……an be fixed real number and define a fuction
$f(x)=(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})$
What is $\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)$ ? For some a$\ne $ a1, a2,…..,an. Compute $\underset{x\to a}{\mathop{\lim }}\,f(x)$.
Ans. Given,
$f(x)=(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})$
$\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,[(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})]$
=\[({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})=0\]
Therefore,
$\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)=0$
Now, $\underset{x\to a}{\mathop{\lim }}\,f(x)=\underset{x\to a}{\mathop{\lim }}\,[(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})]$
=\[({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})\]
Therefore,
$\underset{x\to a}{\mathop{\lim }}\,f(x)=({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})$
30. If \[f(x)=\left\{ \begin{align} & \left| x \right|+1 \\ & 0 \\ & \left| x \right|-1 \\ \end{align} \right.\] $\begin{align} & x<0 \\ & x=0 \\ & x>1 \\ \end{align}$
For what value (s) of does $\underset{x\to a}{\mathop{\lim }}\,f(x)$ exists?
Ans. Given,
\[f(x)=\left\{ \begin{align} & \left| x \right|+1 \\ & 0 \\ & \left| x \right|-1 \\ \end{align} \right.\] $\begin{align} & x<0 \\ & x=0 \\ & x>1 \\ \end{align}$
When $a=0$
=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( \left| x \right|+1 \right)\]
=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -x+1 \right)\] when x is negative, $\left| x \right|=-x$
=$0+1$
=$1$
=\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \left| x \right|+1 \right)\]
=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( x-1 \right)\] when x is positive, $\left| x \right|=x$
=$0-1$
=$-1$
Here, $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$
$\underset{x\to 0}{\mathop{\lim }}\,f(x)$ does not exist.
When\[\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,(\left| x \right|+1)\] $a<0$
\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(\left| x \right|+1)\]
=\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(-x+1)\] $[x<a<0\Rightarrow \left| x \right|=-x]$
=\[-a+1\]
$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=-a+1$
Thus, limit exists at $x=a$, where \[a<0\]
When \[a>0\]
$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(\left| x \right|+1)$
=$\underset{x\to a}{\mathop{\lim }}\,(-x-1)$ $[0<x<a\Rightarrow \left| x \right|=x]$
=$-a-1$
$\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,(\left| x \right|+1)$
=$\underset{x\to a}{\mathop{\lim }}\,(-x-1)$ $[0<x<a\Rightarrow \left| x \right|=x]$
=$a-1$
$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=a-1$
Thus, limit exists at $x=a$, where \[a>0\]
Thus $\underset{x\to a}{\mathop{\lim }}\,f(x)$ exists for all $a\ne 0$$\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi $.
31. If function f(x) satisfies, \[\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi \], evaluate $\underset{x\to 1}{\mathop{\lim }}\,f(x)$
Ans. Given,
\[\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi \]
= $\frac{\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)}{\underset{x\to 1}{\mathop{\lim }}\,({{x}^{2}}-1)}=\pi $
= $\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=\pi \underset{x\to 1}{\mathop{\lim }}\,({{x}^{2}}-1)$
=$\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=\pi ({{1}^{2}}-1)$
=$\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=0$
=$\underset{x\to 1}{\mathop{\lim }}\,f(x)-\underset{x\to 1}{\mathop{\lim }}\,2=0$
=$\underset{x\to 1}{\mathop{\lim }}\,f(x)-2=0$
$\underset{x\to 1}{\mathop{\lim }}\,f(x)=2$
32. If $f(x)=\left\{ \begin{align} & m{{x}^{2}}+n \\ & nx+m \\ & n{{x}^{3}}+m \\ \end{align} \right.$ $\begin{align} & x<0 \\ & 0\le x\le 1 \\ & x>1 \\ \end{align}$
For what integers m and n does $\underset{x\to 0}{\mathop{\lim }}\,f(x)$ and $\underset{x\to 1}{\mathop{\lim }}\,f(x)$ exists?
Ans. Given,
$f(x)=\left\{ \begin{align} & m{{x}^{2}}+n \\ & nx+m \\ & n{{x}^{3}}+m \\ \end{align} \right.$ $\begin{align} & x<0 \\ & 0\le x\le 1 \\ & x>1 \\ \end{align}$\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,(m{{x}^{2}}+n)\]
=$m{{(0)}^{2}}+n$
=$n$
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,(nx+m)$
=$n{{(0)}^{{}}}+m$
=$m$
Thus, $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$exists if m=n
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,(nx+m)$
=$n(1)+m$
=$m+n$
$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,(n{{x}^{3}}+m)$
=$n{{(1)}^{3}}+m$
=$m+n$
$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(x)$
Thus, $\underset{x\to 1}{\mathop{\lim }}\,f(x)$exists for any internal value of m and n
Conclusion
Calculating limits for polynomial and rational functions involves substitution and simplifying expressions. Understanding Left Hand Limits (LHL) and Right Hand Limits (RHL) is crucial for analysing function behaviour at specific points. Limits for trigonometric functions uses geometric proof of the important inequalities relating trigonometric functions. The Sandwich Theorem helps find limits by bounding a function between two known limits. Focus on mastering these methods, as they are fundamental for calculus. Previous year question papers typically have 3-4 questions on limits, emphasizing their importance in exams. Practice these concepts thoroughly to excel in your studies.
Class 11 Maths Chapter 12: Exercises Breakdown
Exercise | Number of Questions |
11 Questions and Solutions | |
30 Questions and Solutions |
CBSE Class 11 Maths Chapter 12 Other Study Materials
S. No | Important Links for Chapter 12 Limits and Derivatives |
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
Chapter-Specific NCERT Solutions for Class 11 Maths
Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S. No | NCERT Solutions Class 11 Maths All Chapters |
1 | |
2 | |
3 | |
4 | Chapter 4 - Complex Numbers and Quadratic Equations Solutions |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | Chapter 11 - Introduction to Three Dimensional Geometry Solutions |
12 | |
13 | |
14 |
Important Related Links for CBSE Class 11 Maths
S.No. | Important Study Material for Maths Class 11 |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives Exercise 12.1 - 2025-26
1. What does ex 12.1 class 11 limits and derivatives cover in NCERT textbook?
Ex 12.1 class 11 limits and derivatives focuses on the fundamental concept of limits of functions. It includes problems on evaluating limits algebraically, understanding limit notation, and applying basic limit laws. The exercise covers polynomial functions, rational functions, and simple algebraic expressions.
2. How do NCERT Solutions help students understand limits and derivatives class 11 ex 12.1?
NCERT Solutions provide detailed step-by-step explanations for each problem in Exercise 12.1, showing algebraic manipulations and limit evaluation techniques clearly.
These solutions demonstrate factorization methods, rationalization techniques, substitution approaches, and application of standard limit formulas systematically.
3. What is the limit of a function at a point?
The limit of a function f(x) at point 'a' is the value that f(x) approaches as x gets closer to 'a'. It represents the expected value without actually substituting x = a, written as lim(x→a) f(x).
4. Can students download exercise 12.1 class 11 limits and derivatives solutions as Free PDF?
Yes, students can access Exercise 12.1 solutions through Free PDF downloads available on educational platforms like Vedantu.
5. Why do some limits not exist in mathematics?
Limits may not exist when left-hand and right-hand limits differ, when functions approach infinity, or when functions oscillate without settling to a specific value. These situations indicate undefined behavior at particular points.
6. What algebraic techniques are used in limits and derivatives class 11 exercise 12.1?
Exercise 12.1 employs several algebraic methods including factorization, rationalization, and substitution to evaluate limits effectively.
Direct substitution often leads to indeterminate forms like 0/0, requiring special techniques for proper evaluation.
7. How does ex 12.1 class 11 prepare students for derivatives?
Ex 12.1 builds essential limit evaluation skills that directly apply to derivative calculations using first principles. Understanding limits is crucial since derivatives are defined as limits of difference quotients as intervals approach zero.
8. What common mistakes do students make while solving exercise 12.1 class 11 problems?
Students frequently make errors in direct substitution, improper factorization, and misapplying limit laws in Exercise 12.1 problems.
These mistakes lead to incorrect answers and poor conceptual understanding, affecting performance in subsequent chapters.
9. Which fundamental limit formulas appear in ex 12.1 class 11?
Ex 12.1 primarily uses polynomial and rational function limits, along with basic algebraic limit laws. Key formulas include lim(x→a) c = c, lim(x→a) x = a, and limit of sum/product/quotient rules for evaluating expressions.
10. What study approach works best for mastering limits and derivatives class 11 ex 12.1?
Effective mastery requires systematic practice starting with basic limit evaluation techniques, then progressing to complex algebraic manipulations.
Limits form the theoretical foundation for calculus, requiring solid conceptual understanding rather than mere formula memorization.
















