
Which application uses differentiator?
Answer
131.7k+ views
Hint: First recall the definition of the differential operator then write the name of the field where the differential operator is used.
1) The differentiation of a function f(x) with respect to x denotes the rate of change of f(x) in time x.
Now, the differentiator is used in analog computers and frequency modulators.
2) The differentiation of a function f(x) with respect to x denotes the slope of the tangent of the curve.
3) Using the derivative of the function we can find the increasing or decreasing interval:
If the derivative of the function f(x) is greater than zero in the interval (a,b), then the function is increasing in the interval (a,b).
If the derivative of the function f(x) is less than zero in the interval (a,b), then the function is decreasing in the interval (a,b).
4) Maxima and minima:
If the double derivative of a function f(x) is less than zero at x=a, then the function has local maxima at x = a
If the double derivative of a function f(x) is greater than zero at x=a, then the function has local minima at x = a
The differentiator is used in analog computers and frequency modulators.
Notes Sometime students did not find any field where a differentiator is used then they write any mathematical equation as an application which is not correct, here we need to write where we use the differentiator other than solving problems.
1) The differentiation of a function f(x) with respect to x denotes the rate of change of f(x) in time x.
Now, the differentiator is used in analog computers and frequency modulators.
2) The differentiation of a function f(x) with respect to x denotes the slope of the tangent of the curve.
3) Using the derivative of the function we can find the increasing or decreasing interval:
If the derivative of the function f(x) is greater than zero in the interval (a,b), then the function is increasing in the interval (a,b).
If the derivative of the function f(x) is less than zero in the interval (a,b), then the function is decreasing in the interval (a,b).
4) Maxima and minima:
If the double derivative of a function f(x) is less than zero at x=a, then the function has local maxima at x = a
If the double derivative of a function f(x) is greater than zero at x=a, then the function has local minima at x = a
The differentiator is used in analog computers and frequency modulators.
Notes Sometime students did not find any field where a differentiator is used then they write any mathematical equation as an application which is not correct, here we need to write where we use the differentiator other than solving problems.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

Difference Between Mutually Exclusive and Independent Events

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
