
Unit of electric field intensity is not:
(A) $\dfrac{V}{m}$
(B) $\dfrac{N}{C}$
(C) $\dfrac{{dyne}}{{statcoulomb}}$
(D) $\text{None of these}$
Answer
163.5k+ views
Hint: The electric field intensity at any point is defined as the force experienced by a unit positive charge placed at that point.
Complete solution:
1. A positive charge or a negative charge is said to create its field around itself. If a charge ${Q_1}$ exerts a force on charge ${Q_2}$ placed near it, it may be stated that since ${Q_2}$ is in the field of ${Q_1}$, it experiences some force, or it may also be said that since charge ${Q_1}$ is inside the field of ${Q_2}$, it experience some force. Thus space around a charge in which another charged particle experiences a force is said to have an electrical field in it.
2. The electric field intensity at any point is defined as the force experienced by a unit positive charge placed at that point.
$\overrightarrow E = \dfrac{{\overrightarrow F }}{{{q_0}}}$ Where ${q_0} \to 0$ so that presence of this charge may not affect the source charge Q and its electric field is not changed, therefore expression for electric field intensity can be better written as
$\overrightarrow E = \mathop {\lim }\limits_{{q_0} \to 0} \dfrac{{\overrightarrow F }}{{{q_0}}}$.
3. So, from these formulas the S.I unit of electric force intensity is
$\dfrac{F}{q} = \dfrac{{Newton}}{{Coulomb}} = \dfrac{N}{C} = \dfrac{{Volt}}{{meter}} = \dfrac{V}{m} = \dfrac{{Joule}}{{coulomb*meter}}$ and $C.G.S.$ $unit$- $\dfrac{dyne}{statcoulomb}$.
Hence from the given options (D) is correct.
Note: Electric field intensity is a vector quantity. Electric field due to a positive charge is always away from the charge and that due to a negative charge is always towards the charge. The stat coulomb is defined as if two stationary objects each carry a charge of 1 stat coulomb and are 1 cm apart, they will electrically repel each other with a force of 1 dyne.
Complete solution:
1. A positive charge or a negative charge is said to create its field around itself. If a charge ${Q_1}$ exerts a force on charge ${Q_2}$ placed near it, it may be stated that since ${Q_2}$ is in the field of ${Q_1}$, it experiences some force, or it may also be said that since charge ${Q_1}$ is inside the field of ${Q_2}$, it experience some force. Thus space around a charge in which another charged particle experiences a force is said to have an electrical field in it.
2. The electric field intensity at any point is defined as the force experienced by a unit positive charge placed at that point.
$\overrightarrow E = \dfrac{{\overrightarrow F }}{{{q_0}}}$ Where ${q_0} \to 0$ so that presence of this charge may not affect the source charge Q and its electric field is not changed, therefore expression for electric field intensity can be better written as
$\overrightarrow E = \mathop {\lim }\limits_{{q_0} \to 0} \dfrac{{\overrightarrow F }}{{{q_0}}}$.
3. So, from these formulas the S.I unit of electric force intensity is
$\dfrac{F}{q} = \dfrac{{Newton}}{{Coulomb}} = \dfrac{N}{C} = \dfrac{{Volt}}{{meter}} = \dfrac{V}{m} = \dfrac{{Joule}}{{coulomb*meter}}$ and $C.G.S.$ $unit$- $\dfrac{dyne}{statcoulomb}$.
Hence from the given options (D) is correct.
Note: Electric field intensity is a vector quantity. Electric field due to a positive charge is always away from the charge and that due to a negative charge is always towards the charge. The stat coulomb is defined as if two stationary objects each carry a charge of 1 stat coulomb and are 1 cm apart, they will electrically repel each other with a force of 1 dyne.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE
