Answer
Verified
114.9k+ views
Hint:The photoelectric effect occurs when the energy carried by the incident photons is greater than the work function of the metal plate. The energy of the photon is proportional to the frequency of the photon. So, by comparing the frequencies of the given ultraviolet rays, we can determine for which ray the photoelectric effect may occur.
Formula used:
\[E = h\nu \]
where h is the Plank’s constant and E is the energy of the photon with frequency equals to \[\nu \].
\[c = \nu \lambda \]
where c is the speed of light, \[\nu \] is the frequency of the photon and \[\lambda \] is the wavelength of the light wave.
Complete step by step solution:
As the energy of the photon is directly proportional to the frequency of the wave so the energy of the visible light is more than that of infrared photons.
\[E \propto \nu \]
As it is given that the photoelectric effect doesn’t occur when the metal surface is illuminated with ultraviolet rays. This means that the frequency of the ultraviolet is less than the threshold frequency of the photoelectric metal. So, to show the photoelectric effect we need ray with higher frequency than the ultraviolet rays.
Light spectrum is the combination of electromagnetic waves of many different wavelengths of energy produced by the light source. As the frequency of the electromagnetic wave is the most characteristic property, the spectrum is characterized based on the range of the frequencies.
The frequency of the X-rays is greater than the frequency of the ultraviolet rays. So, the energy of the photons of the X-rays is greater than that of ultraviolet rays. So, the photoelectric effect may occur when the photoelectric plate is incident with X-ray.
Therefore, the correct option is B.
Note: From the electromagnetic spectrum we can also compare the wavelengths of the rays to determine the rays which can cause the photoelectric effect. But the energy of the photon is inversely proportional to the wavelength.
Formula used:
\[E = h\nu \]
where h is the Plank’s constant and E is the energy of the photon with frequency equals to \[\nu \].
\[c = \nu \lambda \]
where c is the speed of light, \[\nu \] is the frequency of the photon and \[\lambda \] is the wavelength of the light wave.
Complete step by step solution:
As the energy of the photon is directly proportional to the frequency of the wave so the energy of the visible light is more than that of infrared photons.
\[E \propto \nu \]
As it is given that the photoelectric effect doesn’t occur when the metal surface is illuminated with ultraviolet rays. This means that the frequency of the ultraviolet is less than the threshold frequency of the photoelectric metal. So, to show the photoelectric effect we need ray with higher frequency than the ultraviolet rays.
Light spectrum is the combination of electromagnetic waves of many different wavelengths of energy produced by the light source. As the frequency of the electromagnetic wave is the most characteristic property, the spectrum is characterized based on the range of the frequencies.
Electromagnetic rays | Range of frequency |
\[\gamma - rays\] | \[{10^{20}} - {10^{24}}Hz\] |
X-rays | \[{10^{17}} - {10^{20}}Hz\] |
Ultraviolet rays | \[{10^{15}} - {10^{17}}Hz\] |
Visible spectrum | \[{10^{14.5}} - {10^{15}}Hz\] |
Infra-red | \[{10^{11}} - {10^{14.5}}Hz\] |
Microwave | \[{10^9} - {10^{11}}Hz\] |
FM radio wave | \[{10^6} - {10^9}Hz\] |
AM radio wave | \[{10^5} - {10^6}Hz\] |
Long radio wave | \[{10^0} - {10^5}Hz\] |
The frequency of the X-rays is greater than the frequency of the ultraviolet rays. So, the energy of the photons of the X-rays is greater than that of ultraviolet rays. So, the photoelectric effect may occur when the photoelectric plate is incident with X-ray.
Therefore, the correct option is B.
Note: From the electromagnetic spectrum we can also compare the wavelengths of the rays to determine the rays which can cause the photoelectric effect. But the energy of the photon is inversely proportional to the wavelength.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main