
Two satellites of identical masses orbit the earth at different heights. The ratio of their distances from the centre of earth is $d:1$ and the ratio of acceleration due to gravity at those heights is $g:1$. Then find the ratio of their orbital velocities.
A) $\sqrt {\dfrac{g}{d}} $
B) $\sqrt {gd} $
C) $\sqrt g $
D) $\sqrt g d$
Answer
233.1k+ views
Hint: Orbital Velocity is the velocity of the artificial Earth's satellite for revolving around the Earth.
Mathematically, Orbital Velocity is given by :
$\sqrt {\dfrac{{GM}}{r}} $
Using the above relation we find the ratio orbital velocities of the two given satellites.
Complete step by step solution:
Let's discuss satellites and orbital velocity first and then we will find the ratio of the orbital velocities.
A satellite is a body which is continuously revolving around the bigger body. Centripetal force is responsible for the revolution of the satellite along with the Gravitational attraction between the satellite and the body around which it is revolving.
Orbital Velocity: It is the velocity which is given to an artificial Earth's satellite a few hundred kilometers above the earth surface so that it may start revolving round the Earth. It is denoted by $v_0$.
Now, we will calculate the ratio of orbital velocities of the two satellites.
Orbital Velocity is given by:
$ \Rightarrow {v_0} = \sqrt {\dfrac{{GM}}{r}} $.................(1) (orbital velocity)
From the formula for gravitational force value of gravitational acceleration can be given as:
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$ (gravitational acceleration)
$ \Rightarrow gr = \dfrac{{GM}}{r}$...................(2)
Now orbital velocity can be given as:
$v = \sqrt {gr} $
From equation 1 and 2 we get
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{r_1}} }}{{\sqrt {{g_2}{r_2}} }}$
We are provided in the question that ratio of gravitational acceleration is $g:1$ and distance between the satellites is $d:1$, using this information we have
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{d_1}} }}{{\sqrt {{g_2}{d_2}} }}$(r is replaced by d)
$ \Rightarrow v = \sqrt {gd} $
Thus option (D) is correct.
Note: We have many satellites in our solar system some are artificial and some are natural satellites. In our solar system Sun is the biggest body among all other celestial bodies present in the solar system around which planets are revolving, so planets can be said to be satellites. Similarly, the moon revolves around the Earth, and the moon is also a natural satellite.
Mathematically, Orbital Velocity is given by :
$\sqrt {\dfrac{{GM}}{r}} $
Using the above relation we find the ratio orbital velocities of the two given satellites.
Complete step by step solution:
Let's discuss satellites and orbital velocity first and then we will find the ratio of the orbital velocities.
A satellite is a body which is continuously revolving around the bigger body. Centripetal force is responsible for the revolution of the satellite along with the Gravitational attraction between the satellite and the body around which it is revolving.
Orbital Velocity: It is the velocity which is given to an artificial Earth's satellite a few hundred kilometers above the earth surface so that it may start revolving round the Earth. It is denoted by $v_0$.
Now, we will calculate the ratio of orbital velocities of the two satellites.
Orbital Velocity is given by:
$ \Rightarrow {v_0} = \sqrt {\dfrac{{GM}}{r}} $.................(1) (orbital velocity)
From the formula for gravitational force value of gravitational acceleration can be given as:
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$ (gravitational acceleration)
$ \Rightarrow gr = \dfrac{{GM}}{r}$...................(2)
Now orbital velocity can be given as:
$v = \sqrt {gr} $
From equation 1 and 2 we get
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{r_1}} }}{{\sqrt {{g_2}{r_2}} }}$
We are provided in the question that ratio of gravitational acceleration is $g:1$ and distance between the satellites is $d:1$, using this information we have
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{d_1}} }}{{\sqrt {{g_2}{d_2}} }}$(r is replaced by d)
$ \Rightarrow v = \sqrt {gd} $
Thus option (D) is correct.
Note: We have many satellites in our solar system some are artificial and some are natural satellites. In our solar system Sun is the biggest body among all other celestial bodies present in the solar system around which planets are revolving, so planets can be said to be satellites. Similarly, the moon revolves around the Earth, and the moon is also a natural satellite.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

