
Two identical thin plano-convex lenses of refractive index n are silvered, one on the plane side and the other on the convex side. The ratio of their focal length is
A. $\frac{n}{n-1}$
B. $\frac{n-1}{n}$
C. $\frac{n+1}{n}$
D. $n$
Answer
143.7k+ views
Hint:We have two identical thin plano convex lenses. Both have refractive index n. It is given that the plane side of one plano convex lens is silver and the convex side of another plano convex lens is painted. According to the question we have to find the ratio of focal length of two plano convex lenses.
Formula used:
Here we have a combination of a mirror and lens. So, we use equation for power which is:
$P=2{{P}_{l}}-{{P}_{m}}$
Where P is the power of combination, Pl is the power of lens and Pm is the power of mirror.
To simplify this equation, we use a relation connecting focal length and power. That is,
$P=\frac{1}{f}$
Where f is the focal length and P is the power.
Complete answer:
We have the equation connecting focal lengths as:
$\frac{1}{f}=\frac{2}{{{f}_{l}}}+\frac{2}{{{f}_{m}}}$
Where ${{f}_{l}}$ is the focal length of the lens and ${{f}_{m}}$ is the focal length of the mirror.
We know that when the plano convex lens is painted on the convex side, then their focal length will be
${{f}_{m}}=\frac{R}{2}$
Then we can write:
$\frac{1}{{{f}_{l}}}=\frac{n-1}{R}$
So, we can write it as:
${{f}_{2}}=\frac{R}{2n}$
If the plane side of this plano convex lens is painted, then their focal length changes to:
${{f}_{m}}=0$
Then we have:
${{f}_{l}}=\frac{n-1}{R}$
In total focal length this time will be:
${{f}_{1}}=\frac{R}{2(n-1)}$
Then the required ratio will be
$\frac{{{f}_{1}}}{{{f}_{2}}}=\frac{n}{n-1}$
Therefore, the answer is option (A)
Note:Remember that one side is painted silver means that side of the plano convex lens acts as a mirror. That is here it is a combination of lens and mirror. Remember that the power of a mirror is always negative and we should consider rays passing through the lens two times.
Formula used:
Here we have a combination of a mirror and lens. So, we use equation for power which is:
$P=2{{P}_{l}}-{{P}_{m}}$
Where P is the power of combination, Pl is the power of lens and Pm is the power of mirror.
To simplify this equation, we use a relation connecting focal length and power. That is,
$P=\frac{1}{f}$
Where f is the focal length and P is the power.
Complete answer:
We have the equation connecting focal lengths as:
$\frac{1}{f}=\frac{2}{{{f}_{l}}}+\frac{2}{{{f}_{m}}}$
Where ${{f}_{l}}$ is the focal length of the lens and ${{f}_{m}}$ is the focal length of the mirror.
We know that when the plano convex lens is painted on the convex side, then their focal length will be
${{f}_{m}}=\frac{R}{2}$
Then we can write:
$\frac{1}{{{f}_{l}}}=\frac{n-1}{R}$
So, we can write it as:
${{f}_{2}}=\frac{R}{2n}$
If the plane side of this plano convex lens is painted, then their focal length changes to:
${{f}_{m}}=0$
Then we have:
${{f}_{l}}=\frac{n-1}{R}$
In total focal length this time will be:
${{f}_{1}}=\frac{R}{2(n-1)}$
Then the required ratio will be
$\frac{{{f}_{1}}}{{{f}_{2}}}=\frac{n}{n-1}$
Therefore, the answer is option (A)
Note:Remember that one side is painted silver means that side of the plano convex lens acts as a mirror. That is here it is a combination of lens and mirror. Remember that the power of a mirror is always negative and we should consider rays passing through the lens two times.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
