![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The voltage across the \[10\Omega \] resistor in the given circuit is x volt. Then find the value of x to the nearest integer.
Answer
125.1k+ views
Hint: In order to proceed with the problem first we need to know about ohm’s law. It states that the voltage across a conductor is directly proportional to the current flowing through it.
Formula Used:
To find the equation for voltage we have,
\[V = IR\]
Where, I is current and R is resistance.
Complete step by step solution:
![](https://www.vedantu.com/question-sets/7f7d9a31-b8ea-4655-8961-12fa4dfe9d648088966417674201540.png)
Image: A circuit consists of three resistors and a battery.
In the above circuit, the voltage across the \[10\Omega \] resistor in the given circuit is x volt. We need to find the value of x to the nearest integer. From ohm’s law, we have,
\[I = \dfrac{V}{R}\]
\[\Rightarrow V = IR\]…………. (1)
In order to find the current in the circuit, we need to simplify the given circuit by finding the equivalent resistance of the two resistors given in a parallel combination.
![](https://www.vedantu.com/question-sets/e5963b8c-261f-4d68-b2c2-584d4182b3986578496616535963092.png)
Image: An equivalent resistor.
The equivalent resistance is given by,
\[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\]
Here, \[{R_2} = 50\Omega \] and \[{R_3} = 20\Omega \]
Substitute the value in the above equation we get,
\[{R_{eq}} = \dfrac{{50 \times 20}}{{50 + 20}}\]
\[\Rightarrow {R_{eq}} = \dfrac{{1000}}{{70}}\Omega \]
\[\Rightarrow {R_{eq}} = \dfrac{{100}}{7}\Omega \]
Then,
\[R = {R_{eq}} + {R_1}\]
Here, \[{R_1} = 10\Omega \]
Then the above equation will become,
\[R = \dfrac{{100}}{7} + 10\]
\[\Rightarrow R = \dfrac{{100 + 70}}{7}\]
\[\Rightarrow R = \dfrac{{170}}{7}\]
\[\Rightarrow R = 7\Omega \]
Using Ohm’s law,
\[I = \dfrac{V}{R}\]
Now substitute the value of V and R in the above equation we get,
\[I = \dfrac{{170}}{7}\]
\[\Rightarrow I = 7A\]
Now, in order to find the voltage across \[10\Omega \] resistor, consider equation (1)
\[V = IR\]
\[\Rightarrow V = 7 \times 10\]
\[\therefore V = 70V\]
Therefore, the value of x is 70.
Note:Here it is important to remember that, in a circuit when two are more resistors are connected in parallel, we need to apply equivalent resistance formula as \[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\] and if the resistors are connected in series, then we need to add all the resistors to get equivalent value of resistors.
Formula Used:
To find the equation for voltage we have,
\[V = IR\]
Where, I is current and R is resistance.
Complete step by step solution:
![](https://www.vedantu.com/question-sets/7f7d9a31-b8ea-4655-8961-12fa4dfe9d648088966417674201540.png)
Image: A circuit consists of three resistors and a battery.
In the above circuit, the voltage across the \[10\Omega \] resistor in the given circuit is x volt. We need to find the value of x to the nearest integer. From ohm’s law, we have,
\[I = \dfrac{V}{R}\]
\[\Rightarrow V = IR\]…………. (1)
In order to find the current in the circuit, we need to simplify the given circuit by finding the equivalent resistance of the two resistors given in a parallel combination.
![](https://www.vedantu.com/question-sets/e5963b8c-261f-4d68-b2c2-584d4182b3986578496616535963092.png)
Image: An equivalent resistor.
The equivalent resistance is given by,
\[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\]
Here, \[{R_2} = 50\Omega \] and \[{R_3} = 20\Omega \]
Substitute the value in the above equation we get,
\[{R_{eq}} = \dfrac{{50 \times 20}}{{50 + 20}}\]
\[\Rightarrow {R_{eq}} = \dfrac{{1000}}{{70}}\Omega \]
\[\Rightarrow {R_{eq}} = \dfrac{{100}}{7}\Omega \]
Then,
\[R = {R_{eq}} + {R_1}\]
Here, \[{R_1} = 10\Omega \]
Then the above equation will become,
\[R = \dfrac{{100}}{7} + 10\]
\[\Rightarrow R = \dfrac{{100 + 70}}{7}\]
\[\Rightarrow R = \dfrac{{170}}{7}\]
\[\Rightarrow R = 7\Omega \]
Using Ohm’s law,
\[I = \dfrac{V}{R}\]
Now substitute the value of V and R in the above equation we get,
\[I = \dfrac{{170}}{7}\]
\[\Rightarrow I = 7A\]
Now, in order to find the voltage across \[10\Omega \] resistor, consider equation (1)
\[V = IR\]
\[\Rightarrow V = 7 \times 10\]
\[\therefore V = 70V\]
Therefore, the value of x is 70.
Note:Here it is important to remember that, in a circuit when two are more resistors are connected in parallel, we need to apply equivalent resistance formula as \[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\] and if the resistors are connected in series, then we need to add all the resistors to get equivalent value of resistors.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)