
The voltage across the \[10\Omega \] resistor in the given circuit is x volt. Then find the value of x to the nearest integer.
Answer
167.4k+ views
Hint: In order to proceed with the problem first we need to know about ohm’s law. It states that the voltage across a conductor is directly proportional to the current flowing through it.
Formula Used:
To find the equation for voltage we have,
\[V = IR\]
Where, I is current and R is resistance.
Complete step by step solution:

Image: A circuit consists of three resistors and a battery.
In the above circuit, the voltage across the \[10\Omega \] resistor in the given circuit is x volt. We need to find the value of x to the nearest integer. From ohm’s law, we have,
\[I = \dfrac{V}{R}\]
\[\Rightarrow V = IR\]…………. (1)
In order to find the current in the circuit, we need to simplify the given circuit by finding the equivalent resistance of the two resistors given in a parallel combination.

Image: An equivalent resistor.
The equivalent resistance is given by,
\[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\]
Here, \[{R_2} = 50\Omega \] and \[{R_3} = 20\Omega \]
Substitute the value in the above equation we get,
\[{R_{eq}} = \dfrac{{50 \times 20}}{{50 + 20}}\]
\[\Rightarrow {R_{eq}} = \dfrac{{1000}}{{70}}\Omega \]
\[\Rightarrow {R_{eq}} = \dfrac{{100}}{7}\Omega \]
Then,
\[R = {R_{eq}} + {R_1}\]
Here, \[{R_1} = 10\Omega \]
Then the above equation will become,
\[R = \dfrac{{100}}{7} + 10\]
\[\Rightarrow R = \dfrac{{100 + 70}}{7}\]
\[\Rightarrow R = \dfrac{{170}}{7}\]
\[\Rightarrow R = 7\Omega \]
Using Ohm’s law,
\[I = \dfrac{V}{R}\]
Now substitute the value of V and R in the above equation we get,
\[I = \dfrac{{170}}{7}\]
\[\Rightarrow I = 7A\]
Now, in order to find the voltage across \[10\Omega \] resistor, consider equation (1)
\[V = IR\]
\[\Rightarrow V = 7 \times 10\]
\[\therefore V = 70V\]
Therefore, the value of x is 70.
Note:Here it is important to remember that, in a circuit when two are more resistors are connected in parallel, we need to apply equivalent resistance formula as \[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\] and if the resistors are connected in series, then we need to add all the resistors to get equivalent value of resistors.
Formula Used:
To find the equation for voltage we have,
\[V = IR\]
Where, I is current and R is resistance.
Complete step by step solution:

Image: A circuit consists of three resistors and a battery.
In the above circuit, the voltage across the \[10\Omega \] resistor in the given circuit is x volt. We need to find the value of x to the nearest integer. From ohm’s law, we have,
\[I = \dfrac{V}{R}\]
\[\Rightarrow V = IR\]…………. (1)
In order to find the current in the circuit, we need to simplify the given circuit by finding the equivalent resistance of the two resistors given in a parallel combination.

Image: An equivalent resistor.
The equivalent resistance is given by,
\[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\]
Here, \[{R_2} = 50\Omega \] and \[{R_3} = 20\Omega \]
Substitute the value in the above equation we get,
\[{R_{eq}} = \dfrac{{50 \times 20}}{{50 + 20}}\]
\[\Rightarrow {R_{eq}} = \dfrac{{1000}}{{70}}\Omega \]
\[\Rightarrow {R_{eq}} = \dfrac{{100}}{7}\Omega \]
Then,
\[R = {R_{eq}} + {R_1}\]
Here, \[{R_1} = 10\Omega \]
Then the above equation will become,
\[R = \dfrac{{100}}{7} + 10\]
\[\Rightarrow R = \dfrac{{100 + 70}}{7}\]
\[\Rightarrow R = \dfrac{{170}}{7}\]
\[\Rightarrow R = 7\Omega \]
Using Ohm’s law,
\[I = \dfrac{V}{R}\]
Now substitute the value of V and R in the above equation we get,
\[I = \dfrac{{170}}{7}\]
\[\Rightarrow I = 7A\]
Now, in order to find the voltage across \[10\Omega \] resistor, consider equation (1)
\[V = IR\]
\[\Rightarrow V = 7 \times 10\]
\[\therefore V = 70V\]
Therefore, the value of x is 70.
Note:Here it is important to remember that, in a circuit when two are more resistors are connected in parallel, we need to apply equivalent resistance formula as \[{R_{eq}} = \dfrac{{{R_2}{R_3}}}{{{R_2} + {R_3}}}\] and if the resistors are connected in series, then we need to add all the resistors to get equivalent value of resistors.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

Difference Between Orbit and Orbital in Chemistry Explained (With Table & Diagram)

Difference Between Intensive and Extensive Properties in Chemistry

Difference Between Evaporation and Boiling: Key Concepts, Table & Examples

Difference Between CNG and LPG: Explained with Table, Properties & Uses

Difference Between Cell and Battery – Key Differences, Diagram, and Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Wheatstone Bridge for JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Ideal and Non-Ideal Solutions Raoult's Law - JEE
