
The Van der Waals equation of state for some gases can be expressed as: $\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$, where $P$ is the pressure, $V$ is the molar volume, and $T$ is the absolute temperature of the given sample of gas and $a$, $b$ and $R$ are constants. The dimensions of $a$ are:
(A) $M{L^5}{T^{ - 2}}$
(B) $M{L^{ - 1}}{T^{ - 2}}$
(C) ${L^3}$
(D) none of the above
Answer
144.6k+ views
Hint: By considering the other terms as the constant than the $\left( {P + \dfrac{a}{{{V^2}}}} \right)$. By using this term only, the dimension of the $a$ can be determined. By keeping the $a$ in one side and the other terms in the other side, the dimension of $a$ can be determined.
Complete step by step solution
Given that,
The Van der Waals equation of state for some gases can be expressed as: $\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$, where $P$ is the pressure, $V$ is the molar volume, and $T$ is the absolute temperature of the given sample of gas.
By considering the term,
$\left( {P + \dfrac{a}{{{V^2}}}} \right) = 0$
By rearranging the terms, then the above equation is written as,
$\left| P \right| = \left| {\dfrac{a}{{{V^2}}}} \right|$
By keeping the term $a$ in one side and the other terms in other side, then the above equation is written as,
$a = P \times {V^2}\,................\left( 1 \right)$
Now, the dimensional formula of each terms is,
The dimension of the pressure is given as,
$P = \dfrac{F}{A} = \dfrac{{ma}}{A}$
The unit of the above equation is written as,
$P = \dfrac{{kgm{s^{ - 2}}}}{{{m^2}}}$
By substituting the dimension in the above equation, then
$P = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}}$
The dimensional formula of the volume is given by,
$V = {V^2}$
The unit of the above equation is written as,
$V = {\left( {{m^3}} \right)^2}$
Then the above equation is written as,
$V = {m^6}$
By substituting the dimension in the above equation, then
$V = {L^6}$
By substituting the dimensional formula in the equation (1), then the equation is written as,
$a = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} \times {L^6}$
By rearranging the terms, then the above equation is written as,
$a = ML{T^{ - 2}} \times {L^{ - 2}} \times {L^6}$
On further simplification of the power, then
$a = M{L^5}{T^{ - 2}}$
Hence, the option (A) is the correct answer.
Note: Here the dimension of $a$ is asked, so that the term $\left( {P + \dfrac{a}{{{V^2}}}} \right)$ is taken. If the dimension of the $b$ is asked, then this term $\left( {V - b} \right)$ is taken and the solution is done like we discussed the step by step to determine the dimension formula in the above solution.
Complete step by step solution
Given that,
The Van der Waals equation of state for some gases can be expressed as: $\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$, where $P$ is the pressure, $V$ is the molar volume, and $T$ is the absolute temperature of the given sample of gas.
By considering the term,
$\left( {P + \dfrac{a}{{{V^2}}}} \right) = 0$
By rearranging the terms, then the above equation is written as,
$\left| P \right| = \left| {\dfrac{a}{{{V^2}}}} \right|$
By keeping the term $a$ in one side and the other terms in other side, then the above equation is written as,
$a = P \times {V^2}\,................\left( 1 \right)$
Now, the dimensional formula of each terms is,
The dimension of the pressure is given as,
$P = \dfrac{F}{A} = \dfrac{{ma}}{A}$
The unit of the above equation is written as,
$P = \dfrac{{kgm{s^{ - 2}}}}{{{m^2}}}$
By substituting the dimension in the above equation, then
$P = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}}$
The dimensional formula of the volume is given by,
$V = {V^2}$
The unit of the above equation is written as,
$V = {\left( {{m^3}} \right)^2}$
Then the above equation is written as,
$V = {m^6}$
By substituting the dimension in the above equation, then
$V = {L^6}$
By substituting the dimensional formula in the equation (1), then the equation is written as,
$a = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} \times {L^6}$
By rearranging the terms, then the above equation is written as,
$a = ML{T^{ - 2}} \times {L^{ - 2}} \times {L^6}$
On further simplification of the power, then
$a = M{L^5}{T^{ - 2}}$
Hence, the option (A) is the correct answer.
Note: Here the dimension of $a$ is asked, so that the term $\left( {P + \dfrac{a}{{{V^2}}}} \right)$ is taken. If the dimension of the $b$ is asked, then this term $\left( {V - b} \right)$ is taken and the solution is done like we discussed the step by step to determine the dimension formula in the above solution.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
