
The value of Boltzmann constant is: (In erg $K^{-1}$ molecul$e^{-1}$)
A. $1.38 \times \mathop {10}\nolimits^{ - 16}$
B. $1.38 \times \mathop {10}\nolimits^{ - 23}$
C. $8.314 \times \mathop {10}\nolimits^7$
D. $6.023 \times \mathop {10}\nolimits^{ - 16}$
Answer
173.4k+ views
Hint: It is a proportionality factor that relates average kinetic energy of particles in gas with thermodynamic temperature of gas.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Faraday's Law - Formula & Example

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Enthalpy of Combustion with Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Chemistry Chapter 1 Some Basic Concepts of Chemistry in Hindi - 2025-26

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction - 2025-26
