
The strength of the magnetic field in which the magnet of a vibration magnetometer is oscillating is increased 4 times its original value. The frequency of oscillation would then become
A. Twice its original value
B. Four times its original value
C. Half of its original value
D. One-fourth of its original value
Answer
173.7k+ views
Hint: A vibration magnetometer is a device used to measure the horizontal component of the Earth's magnetic field or to compare the magnetic moments of two magnets. When a magnet hanging in a consistent magnetic field (such the one caused by the earth's magnetic field) is moved out of its equilibrium position and starts to vibrate merely harmonically about the direction of the field.
Formula used:
The expression of oscillation frequency of magnetometer is,
$v = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{mB}}{I}} $
Here, $I$ is the moment of inertia, $B$ is the magnetic field and m$ is the magnetic moment.
Complete step by step solution:
When a bar magnet is positioned in a uniform magnetic field, the force operating in the field's direction causes the bar magnet to spin and make an effort to align itself with the magnetic field. The bar magnet will move in a straightforward harmonic fashion because of the rotational inertia brought on by the torque, which will drive the magnet to rotate and try to align with the field.
The torque acting on a bar magnet and rotational inertia are the basic operating principles of a vibration magnetometer. The formula of oscillating frequency is,
$v = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{mB}}{I}} $
From the above expression it is clear that frequency is directly proportional to the square root of the magnetic field.
$v \propto \sqrt B $
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{B_1}}}{{{B_2}}}} \\ $
We are given that the magnetic field in which the magnet of a vibration magnetometer is oscillating is increased 4 times its original value. So we can say that ${B_2} = 4{B_1}$
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{B_1}}}{{4{B_1}}}} \\ $
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{2} \\ $
$ \therefore {v_2} = 2{v_1}$
The oscillation frequency would then double from its initial value.
Therefore, option A is the correct answer.
Note: The torque and rotation in a uniform magnetic field is the basis for the operation of vibration magnetometers. The magnet will not oscillate and will stop when aligned with the field if the field is weak or not uniform. Therefore, a homogeneous, weak magnetic field is required for the vibration magnetometer to function.
Formula used:
The expression of oscillation frequency of magnetometer is,
$v = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{mB}}{I}} $
Here, $I$ is the moment of inertia, $B$ is the magnetic field and m$ is the magnetic moment.
Complete step by step solution:
When a bar magnet is positioned in a uniform magnetic field, the force operating in the field's direction causes the bar magnet to spin and make an effort to align itself with the magnetic field. The bar magnet will move in a straightforward harmonic fashion because of the rotational inertia brought on by the torque, which will drive the magnet to rotate and try to align with the field.
The torque acting on a bar magnet and rotational inertia are the basic operating principles of a vibration magnetometer. The formula of oscillating frequency is,
$v = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{mB}}{I}} $
From the above expression it is clear that frequency is directly proportional to the square root of the magnetic field.
$v \propto \sqrt B $
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{B_1}}}{{{B_2}}}} \\ $
We are given that the magnetic field in which the magnet of a vibration magnetometer is oscillating is increased 4 times its original value. So we can say that ${B_2} = 4{B_1}$
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{B_1}}}{{4{B_1}}}} \\ $
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{1}{2} \\ $
$ \therefore {v_2} = 2{v_1}$
The oscillation frequency would then double from its initial value.
Therefore, option A is the correct answer.
Note: The torque and rotation in a uniform magnetic field is the basis for the operation of vibration magnetometers. The magnet will not oscillate and will stop when aligned with the field if the field is weak or not uniform. Therefore, a homogeneous, weak magnetic field is required for the vibration magnetometer to function.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Electron Gain Enthalpy and Electron Affinity for JEE

What is Hybridisation in Chemistry?
