
The speed of a transverse wave, going on a wire having a length of 50 cm and mass of 5.0 g is 80 m/s. The area of the cross-section of the wire is \[1m{m^2}\]. Young's modulus is \[1.6 \times {10^{11}}\]. Find the extension of the wire over its natural length.
Answer
165.9k+ views
Hint: First of all, determine the linear mass density of the wire, and then using the relation between the speed of the wave and tension, we will determine the tension developed in the wire. After that apply the relation between the young’s modulus and the strain. Hence, we will get a suitable answer.
Formula used:
\[E = \dfrac{\sigma }{\varepsilon }\]
Complete step by step solution:
In the above problem, we have given the mass of the wire, length of the wire, and cross-section of the wire.
Therefore,
Mass of the wire (m) = 5 Gram, length of the wire(L) = 50cm, cross section of the wire (A) = \[1m{m^2}\] and
Young’ modulus = \[1.6 \times {10^{11}}\] Speed of the wave = 80m/s
Now we have to determine the extension of the wire over its natural length.
Therefore,
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{\sigma }{\varepsilon }}\end{array}\]
Where
E = young’s modulus
\[\sigma \]= stress induced due to tensile force
\[\varepsilon \]= strain
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow \sigma }& = &{\dfrac{T}{A}}\end{array}\] And \[\begin{array}{*{20}{c}}{ \Rightarrow \varepsilon }& = &{\dfrac{{\Delta L}}{L}}\end{array}\]
Where
T = tensile force
\[\Delta L\]= extension in the wire
Therefore,
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta L}}{L}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\] ……. (1).
Now, we know that the linear mass density is,
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{m}{L}}\end{array}\]
Therefore, put the value
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{{5 \times {{10}^{ - 3}}}}{{5 \times {{10}^{ - 2}}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{0.1{\raise0.5ex\hbox{$\scriptstyle {kg}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle m$}}}\end{array}\]
So, the tensile force is given by
\[\begin{array}{*{20}{c}}{ \Rightarrow v}& = &{\sqrt {\dfrac{T}{\mu }} }\end{array}\]
Put the value,
\[\begin{array}{*{20}{c}}{ \Rightarrow 80}& = &{\sqrt {\dfrac{T}{{0.1}}} }\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow T}& = &{64N}\end{array}\]
Now put all the values in the equation (1). Therefore, we will get
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow 1.6 \times {{10}^{11}}}& = &{\dfrac{{64 \times 0.5}}{{1 \times {{10}^{ - 6}} \times \Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \Delta L}& = &{0.02mm}\end{array}\]
So, the extension in the wire is 0.02mm.
Note: It is important to note that the units of all the parameters must be the same otherwise there will be an error in the solution. The common errors occur in reading, zero error, etc. These problems while solving tend to make many mistakes because it includes a number of formulas to remember.
Formula used:
\[E = \dfrac{\sigma }{\varepsilon }\]
Complete step by step solution:
In the above problem, we have given the mass of the wire, length of the wire, and cross-section of the wire.
Therefore,
Mass of the wire (m) = 5 Gram, length of the wire(L) = 50cm, cross section of the wire (A) = \[1m{m^2}\] and
Young’ modulus = \[1.6 \times {10^{11}}\] Speed of the wave = 80m/s
Now we have to determine the extension of the wire over its natural length.
Therefore,
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{\sigma }{\varepsilon }}\end{array}\]
Where
E = young’s modulus
\[\sigma \]= stress induced due to tensile force
\[\varepsilon \]= strain
We know that
\[\begin{array}{*{20}{c}}{ \Rightarrow \sigma }& = &{\dfrac{T}{A}}\end{array}\] And \[\begin{array}{*{20}{c}}{ \Rightarrow \varepsilon }& = &{\dfrac{{\Delta L}}{L}}\end{array}\]
Where
T = tensile force
\[\Delta L\]= extension in the wire
Therefore,
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta L}}{L}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\] ……. (1).
Now, we know that the linear mass density is,
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{m}{L}}\end{array}\]
Therefore, put the value
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{\dfrac{{5 \times {{10}^{ - 3}}}}{{5 \times {{10}^{ - 2}}}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \mu }& = &{0.1{\raise0.5ex\hbox{$\scriptstyle {kg}$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle m$}}}\end{array}\]
So, the tensile force is given by
\[\begin{array}{*{20}{c}}{ \Rightarrow v}& = &{\sqrt {\dfrac{T}{\mu }} }\end{array}\]
Put the value,
\[\begin{array}{*{20}{c}}{ \Rightarrow 80}& = &{\sqrt {\dfrac{T}{{0.1}}} }\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow T}& = &{64N}\end{array}\]
Now put all the values in the equation (1). Therefore, we will get
\[\begin{array}{*{20}{c}}{ \Rightarrow E}& = &{\dfrac{{TL}}{{A\Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow 1.6 \times {{10}^{11}}}& = &{\dfrac{{64 \times 0.5}}{{1 \times {{10}^{ - 6}} \times \Delta L}}}\end{array}\]
\[\begin{array}{*{20}{c}}{ \Rightarrow \Delta L}& = &{0.02mm}\end{array}\]
So, the extension in the wire is 0.02mm.
Note: It is important to note that the units of all the parameters must be the same otherwise there will be an error in the solution. The common errors occur in reading, zero error, etc. These problems while solving tend to make many mistakes because it includes a number of formulas to remember.
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Combination of Capacitors - In Parallel and Series for JEE

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
