Answer
Verified
114.9k+ views
Hint Let R be the distance between the center of earth and the surface of the sun and let \[{R_e}\]be the radius of the earth. Now, use the energy received per unit area on earth’s surface formula to find the relation.
Complete Step By Step Solution
Let us draw the given scenario in a simple diagram. The sun rays hit the earth across its center and tangent points. Let R be the distance between the surface of the sun and the centre of the earth. Now, \[{R_e}\] is the radius of the earth. The sun rays subtend an angle \[\theta \], with respect to R. The image is shown below:
Now, Solar energy received per unit area is defined as the amount of solar energy received over the earth’s surface from the sun. Solar constant is defined as the ratio between the power received from the sun and the square of the distance between sun and center of the earth. Mathematically, given as
\[S = \dfrac{P}{{4\pi {R^2}}}\]
Power radiated by the sun is mathematically given as
\[P = {A_s} \times \sigma {T^4}\], where A is area of the sun, T is temperature on the surface of the sun and \[\sigma \] is Stefan-Boltzmann constant
Substituting P on the above formula we get,
\[ \Rightarrow S = \dfrac{{4\pi {R_s}^2 \times \sigma {T^4}}}{{4\pi {R^2}}}\]
Cancelling out the common terms, we get,
\[ \Rightarrow S = \dfrac{{{R_s}^2 \times \sigma {T^4}}}{{{R^2}}}\]
\[ \Rightarrow S \propto {T^4}\]
Thus, Option (A) is the correct answer for the given question.
Note The power radiated by the sun is defined as the product of power density of the sun’s rays and the total surface area of the sun. Since the sun is a star, the Stefan-Boltzmann law applies, which describes the power radiated by a black body with respect to its temperature.
Complete Step By Step Solution
Let us draw the given scenario in a simple diagram. The sun rays hit the earth across its center and tangent points. Let R be the distance between the surface of the sun and the centre of the earth. Now, \[{R_e}\] is the radius of the earth. The sun rays subtend an angle \[\theta \], with respect to R. The image is shown below:
Now, Solar energy received per unit area is defined as the amount of solar energy received over the earth’s surface from the sun. Solar constant is defined as the ratio between the power received from the sun and the square of the distance between sun and center of the earth. Mathematically, given as
\[S = \dfrac{P}{{4\pi {R^2}}}\]
Power radiated by the sun is mathematically given as
\[P = {A_s} \times \sigma {T^4}\], where A is area of the sun, T is temperature on the surface of the sun and \[\sigma \] is Stefan-Boltzmann constant
Substituting P on the above formula we get,
\[ \Rightarrow S = \dfrac{{4\pi {R_s}^2 \times \sigma {T^4}}}{{4\pi {R^2}}}\]
Cancelling out the common terms, we get,
\[ \Rightarrow S = \dfrac{{{R_s}^2 \times \sigma {T^4}}}{{{R^2}}}\]
\[ \Rightarrow S \propto {T^4}\]
Thus, Option (A) is the correct answer for the given question.
Note The power radiated by the sun is defined as the product of power density of the sun’s rays and the total surface area of the sun. Since the sun is a star, the Stefan-Boltzmann law applies, which describes the power radiated by a black body with respect to its temperature.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs