![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The relation between volume V, pressure P and absolute temperature T of an ideal gas is PV=XT, where X is a constant. The value of X depends upon
A. the mass of gas molecule
B. the average kinetic energy of the gas molecules
C. p, V and T
D. The number of gas molecules in V
Answer
125.1k+ views
Hint First, we will derive the ideal gas equation using the different laws such as Boyle’s law, Charles’s law and Avogadro’s law. Then we will equate the both equations and find the value of x.
Complete step-by-step solution The ideal gas law is the equation of state of ideal gas.
Derivation of ideal gas equation
Let pressure exerted by the gas=P, Temperature=T, Volume of the gas=V, moles=n, universal gas constant=R
Acc. To Boyle’s law,
It states that volume is inversely proportional to pressure given temperature remains the same.
\[V \propto \dfrac{1}{P}\]
Acc. To Charle’s law,
It states that volume of the gas occupied is directly proportional to temperature given pressure is constant.
\[V \propto T\]
Acc. To Avogadro’s law ,
\[V \propto n\]
Combining all three equations
\[V \propto \dfrac{{nT}}{P}\]
Ideal gas equation,
\[PV = nRT\] , R= Universal Gas Constant=8.314J/mol-K ……(1)
We are given that
\[PV = xT\] …….(2)
Comparing the two equations
\[x = nR\]
\[n = \dfrac{N}{{{N_a}}}\] , N= number of molecules of the gas
\[{N_a}\] = Avogadro’s number
So \[{N_a}\] and R are constant
x depends upon N= number of molecules of gas
option(d) the number of gas molecules in V
Note
1. No gas is the ideal gas, it is a good approximation of the behaviour of many gases under various conditions but these are under several limitations.
2. The ideal gas model depends on some assumptions such as molecules of gas are small spheres, indistinguishable. All collisions are elastic.
Complete step-by-step solution The ideal gas law is the equation of state of ideal gas.
Derivation of ideal gas equation
Let pressure exerted by the gas=P, Temperature=T, Volume of the gas=V, moles=n, universal gas constant=R
Acc. To Boyle’s law,
It states that volume is inversely proportional to pressure given temperature remains the same.
\[V \propto \dfrac{1}{P}\]
Acc. To Charle’s law,
It states that volume of the gas occupied is directly proportional to temperature given pressure is constant.
\[V \propto T\]
Acc. To Avogadro’s law ,
\[V \propto n\]
Combining all three equations
\[V \propto \dfrac{{nT}}{P}\]
Ideal gas equation,
\[PV = nRT\] , R= Universal Gas Constant=8.314J/mol-K ……(1)
We are given that
\[PV = xT\] …….(2)
Comparing the two equations
\[x = nR\]
\[n = \dfrac{N}{{{N_a}}}\] , N= number of molecules of the gas
\[{N_a}\] = Avogadro’s number
So \[{N_a}\] and R are constant
x depends upon N= number of molecules of gas
option(d) the number of gas molecules in V
Note
1. No gas is the ideal gas, it is a good approximation of the behaviour of many gases under various conditions but these are under several limitations.
2. The ideal gas model depends on some assumptions such as molecules of gas are small spheres, indistinguishable. All collisions are elastic.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)