Answer
Verified
109.2k+ views
Hint First, we will derive the ideal gas equation using the different laws such as Boyle’s law, Charles’s law and Avogadro’s law. Then we will equate the both equations and find the value of x.
Complete step-by-step solution The ideal gas law is the equation of state of ideal gas.
Derivation of ideal gas equation
Let pressure exerted by the gas=P, Temperature=T, Volume of the gas=V, moles=n, universal gas constant=R
Acc. To Boyle’s law,
It states that volume is inversely proportional to pressure given temperature remains the same.
\[V \propto \dfrac{1}{P}\]
Acc. To Charle’s law,
It states that volume of the gas occupied is directly proportional to temperature given pressure is constant.
\[V \propto T\]
Acc. To Avogadro’s law ,
\[V \propto n\]
Combining all three equations
\[V \propto \dfrac{{nT}}{P}\]
Ideal gas equation,
\[PV = nRT\] , R= Universal Gas Constant=8.314J/mol-K ……(1)
We are given that
\[PV = xT\] …….(2)
Comparing the two equations
\[x = nR\]
\[n = \dfrac{N}{{{N_a}}}\] , N= number of molecules of the gas
\[{N_a}\] = Avogadro’s number
So \[{N_a}\] and R are constant
x depends upon N= number of molecules of gas
option(d) the number of gas molecules in V
Note
1. No gas is the ideal gas, it is a good approximation of the behaviour of many gases under various conditions but these are under several limitations.
2. The ideal gas model depends on some assumptions such as molecules of gas are small spheres, indistinguishable. All collisions are elastic.
Complete step-by-step solution The ideal gas law is the equation of state of ideal gas.
Derivation of ideal gas equation
Let pressure exerted by the gas=P, Temperature=T, Volume of the gas=V, moles=n, universal gas constant=R
Acc. To Boyle’s law,
It states that volume is inversely proportional to pressure given temperature remains the same.
\[V \propto \dfrac{1}{P}\]
Acc. To Charle’s law,
It states that volume of the gas occupied is directly proportional to temperature given pressure is constant.
\[V \propto T\]
Acc. To Avogadro’s law ,
\[V \propto n\]
Combining all three equations
\[V \propto \dfrac{{nT}}{P}\]
Ideal gas equation,
\[PV = nRT\] , R= Universal Gas Constant=8.314J/mol-K ……(1)
We are given that
\[PV = xT\] …….(2)
Comparing the two equations
\[x = nR\]
\[n = \dfrac{N}{{{N_a}}}\] , N= number of molecules of the gas
\[{N_a}\] = Avogadro’s number
So \[{N_a}\] and R are constant
x depends upon N= number of molecules of gas
option(d) the number of gas molecules in V
Note
1. No gas is the ideal gas, it is a good approximation of the behaviour of many gases under various conditions but these are under several limitations.
2. The ideal gas model depends on some assumptions such as molecules of gas are small spheres, indistinguishable. All collisions are elastic.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main