![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The ratio of angular frequency and angular wave number is
(A) particle velocity
(B) wave velocity
(C) energy
(D) wavelength per unit oscillation
Answer
125.1k+ views
Hint: Use the formula of the angular frequency and the formula of the angular wave number. Divide both the formula to find the ratio of the both by simplifying the obtained relation. Compare the obtained relation with the options given, to find the answer.
Useful formula:
(1) The formula of the angular frequency is given by
$\omega = 2\pi f$
Where $\omega $ is the angular frequency and $f$ is the frequency of the wave.
(2) The formula of the wave number is given by
$k = \dfrac{{2\pi }}{\lambda }$
Where $k$ is the wavenumber of the wave and $\lambda $ is the wavelength.
(3) The formula of the wave velocity is given by
$v = \lambda f$
Where $v$ is the velocity of the wave, $\lambda $is the wavelength and the $f$ is the frequency.
Complete step by step solution:
The angular frequency is defined as the ratio of the angular displacement and the time taken. Wavelength is the length of the one wave. Its reciprocal value provides the value for the wavenumber. It is also known as the propagation number or the angular wavenumber.
Let us consider the formula of the angular frequency of the wave.
$\omega = 2\pi f$ ………………………… (1)
Let us consider the formula of the wave number.
$k = \dfrac{{2\pi }}{\lambda }$ …………………………… (2)
Let us divide the equation (1) and (2) to find the ratio of the angular frequency to the angular wave number.
$\dfrac{\omega }{k} = \dfrac{{2\pi f}}{{\dfrac{{2\pi }}{\lambda }}} = \lambda f$
$\dfrac{\omega }{k} = v$
Hence the ratio of the angular frequency and the angular wave number is the wave velocity.
Thus the option (B) is correct.
Note: In the above solution, don't confuse the angular frequency with that of the regular frequency. This is because the frequency is the reciprocal of the time period of the wave where the angular frequency is the ratio of the angular displacement and the time taken.
Useful formula:
(1) The formula of the angular frequency is given by
$\omega = 2\pi f$
Where $\omega $ is the angular frequency and $f$ is the frequency of the wave.
(2) The formula of the wave number is given by
$k = \dfrac{{2\pi }}{\lambda }$
Where $k$ is the wavenumber of the wave and $\lambda $ is the wavelength.
(3) The formula of the wave velocity is given by
$v = \lambda f$
Where $v$ is the velocity of the wave, $\lambda $is the wavelength and the $f$ is the frequency.
Complete step by step solution:
The angular frequency is defined as the ratio of the angular displacement and the time taken. Wavelength is the length of the one wave. Its reciprocal value provides the value for the wavenumber. It is also known as the propagation number or the angular wavenumber.
Let us consider the formula of the angular frequency of the wave.
$\omega = 2\pi f$ ………………………… (1)
Let us consider the formula of the wave number.
$k = \dfrac{{2\pi }}{\lambda }$ …………………………… (2)
Let us divide the equation (1) and (2) to find the ratio of the angular frequency to the angular wave number.
$\dfrac{\omega }{k} = \dfrac{{2\pi f}}{{\dfrac{{2\pi }}{\lambda }}} = \lambda f$
$\dfrac{\omega }{k} = v$
Hence the ratio of the angular frequency and the angular wave number is the wave velocity.
Thus the option (B) is correct.
Note: In the above solution, don't confuse the angular frequency with that of the regular frequency. This is because the frequency is the reciprocal of the time period of the wave where the angular frequency is the ratio of the angular displacement and the time taken.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)