
The ratio of angular frequency and angular wave number is
(A) particle velocity
(B) wave velocity
(C) energy
(D) wavelength per unit oscillation
Answer
174.3k+ views
Hint: Use the formula of the angular frequency and the formula of the angular wave number. Divide both the formula to find the ratio of the both by simplifying the obtained relation. Compare the obtained relation with the options given, to find the answer.
Useful formula:
(1) The formula of the angular frequency is given by
$\omega = 2\pi f$
Where $\omega $ is the angular frequency and $f$ is the frequency of the wave.
(2) The formula of the wave number is given by
$k = \dfrac{{2\pi }}{\lambda }$
Where $k$ is the wavenumber of the wave and $\lambda $ is the wavelength.
(3) The formula of the wave velocity is given by
$v = \lambda f$
Where $v$ is the velocity of the wave, $\lambda $is the wavelength and the $f$ is the frequency.
Complete step by step solution:
The angular frequency is defined as the ratio of the angular displacement and the time taken. Wavelength is the length of the one wave. Its reciprocal value provides the value for the wavenumber. It is also known as the propagation number or the angular wavenumber.
Let us consider the formula of the angular frequency of the wave.
$\omega = 2\pi f$ ………………………… (1)
Let us consider the formula of the wave number.
$k = \dfrac{{2\pi }}{\lambda }$ …………………………… (2)
Let us divide the equation (1) and (2) to find the ratio of the angular frequency to the angular wave number.
$\dfrac{\omega }{k} = \dfrac{{2\pi f}}{{\dfrac{{2\pi }}{\lambda }}} = \lambda f$
$\dfrac{\omega }{k} = v$
Hence the ratio of the angular frequency and the angular wave number is the wave velocity.
Thus the option (B) is correct.
Note: In the above solution, don't confuse the angular frequency with that of the regular frequency. This is because the frequency is the reciprocal of the time period of the wave where the angular frequency is the ratio of the angular displacement and the time taken.
Useful formula:
(1) The formula of the angular frequency is given by
$\omega = 2\pi f$
Where $\omega $ is the angular frequency and $f$ is the frequency of the wave.
(2) The formula of the wave number is given by
$k = \dfrac{{2\pi }}{\lambda }$
Where $k$ is the wavenumber of the wave and $\lambda $ is the wavelength.
(3) The formula of the wave velocity is given by
$v = \lambda f$
Where $v$ is the velocity of the wave, $\lambda $is the wavelength and the $f$ is the frequency.
Complete step by step solution:
The angular frequency is defined as the ratio of the angular displacement and the time taken. Wavelength is the length of the one wave. Its reciprocal value provides the value for the wavenumber. It is also known as the propagation number or the angular wavenumber.
Let us consider the formula of the angular frequency of the wave.
$\omega = 2\pi f$ ………………………… (1)
Let us consider the formula of the wave number.
$k = \dfrac{{2\pi }}{\lambda }$ …………………………… (2)
Let us divide the equation (1) and (2) to find the ratio of the angular frequency to the angular wave number.
$\dfrac{\omega }{k} = \dfrac{{2\pi f}}{{\dfrac{{2\pi }}{\lambda }}} = \lambda f$
$\dfrac{\omega }{k} = v$
Hence the ratio of the angular frequency and the angular wave number is the wave velocity.
Thus the option (B) is correct.
Note: In the above solution, don't confuse the angular frequency with that of the regular frequency. This is because the frequency is the reciprocal of the time period of the wave where the angular frequency is the ratio of the angular displacement and the time taken.
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
