
The quantity of heat which crosses per unit area of a metal plate during condition depends upon
A. The density of the metal
B. The temperature gradient perpendicular to the area
C. The temperature to which the metal is heated
D. The area of the metal plate
Answer
154.8k+ views
Hint: To tackle this problem, we must first understand the rate of heat flow. The rate of heat flow is the quantity of heat transmitted per unit of time. We will discover the solution here by applying the heat flow formula.
Formula Used:
To find the heat flow the formula is,
\[Q = KA\dfrac{{\Delta T}}{L}\]
Where, A is a cross-sectional area, \[\Delta T\] is the temperature difference between two ends of a metal, L is the length of the metal plate and K is the thermal conductivity.
Complete step by step solution:
The quantity of heat is nothing but how much the heat flow per unit of time in a given material and is given by,
\[Q = KA\dfrac{{\Delta T}}{L}\]
As we can see here, the heat flow depends on the temperature gradient that is perpendicular to the area, that is it always depends on the difference in the temperature between the two ends of the metal and does not depend on the temperature to which the metal is heated. Therefore, the quantity of heat which crosses per unit area of a metal plate depends on the temperature gradient perpendicular to the area.
Hence, option B is the correct answer.
Note:Temperature gradients occur in solids, fluids, and as well as gases. For example, if the ends of an aluminium bar are exposed to two different temperatures, then, there exists a temperature gradient in the bar that causes the heat to flow from the hotter end to the cooler end.
Formula Used:
To find the heat flow the formula is,
\[Q = KA\dfrac{{\Delta T}}{L}\]
Where, A is a cross-sectional area, \[\Delta T\] is the temperature difference between two ends of a metal, L is the length of the metal plate and K is the thermal conductivity.
Complete step by step solution:
The quantity of heat is nothing but how much the heat flow per unit of time in a given material and is given by,
\[Q = KA\dfrac{{\Delta T}}{L}\]
As we can see here, the heat flow depends on the temperature gradient that is perpendicular to the area, that is it always depends on the difference in the temperature between the two ends of the metal and does not depend on the temperature to which the metal is heated. Therefore, the quantity of heat which crosses per unit area of a metal plate depends on the temperature gradient perpendicular to the area.
Hence, option B is the correct answer.
Note:Temperature gradients occur in solids, fluids, and as well as gases. For example, if the ends of an aluminium bar are exposed to two different temperatures, then, there exists a temperature gradient in the bar that causes the heat to flow from the hotter end to the cooler end.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Displacement-Time Graph and Velocity-Time Graph for JEE

Electrical Field of Charged Spherical Shell - JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

If the unit of power is 1Kilo Watt the length is 100m class 11 physics JEE_Main

Functional Equations - Detailed Explanation with Methods for JEE

Growth and Decay of Current in LR Circuits for JEE Main Physics 2025

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Chemistry Notes 2025

Electrochemistry JEE Advanced 2025 Notes

JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
