
The pressure of an ideal gas is written as $P=\dfrac{2 E}{3 V} .$ Here $E$ stands for
A. total translational kinetic energy
B. rotational kinetic energy
C. average translational kinetic energy
D. total kinetic energy
Answer
216k+ views
Hint We know that an ideal gas is defined as one in which all collisions between atoms or molecules are perfectly elastic and in which there are no intermolecular attractive forces. One can visualize it as a collection of perfectly hard spheres which collide but which otherwise do not interact with each other. In most usual conditions (for instance at standard temperature and pressure), most real gases behave qualitatively like an ideal gas. Many gases such as nitrogen, oxygen, hydrogen, noble gases, and some heavier gases like carbon dioxide can be treated like ideal gases within reasonable tolerances.
Complete step by step answer
Given in the question that,
$\mathrm{P}=\dfrac{2 \mathrm{E}}{3 \mathrm{V}}$
$\Rightarrow \mathrm{PV}=\dfrac{2}{3} \mathrm{E}$
$\Rightarrow \mathrm{nRT}=\dfrac{2}{3} \mathrm{E} \quad\{$ as $\mathrm{PV}=\mathrm{nRT}$ ideal gas equation $\}$
$\Rightarrow \dfrac{3}{2} \mathrm{nRT}=\mathrm{E}$
$\Rightarrow \dfrac{3}{2} \mathrm{KT}=\mathrm{E} \quad\{\mathrm{K}=\mathrm{nR}\}$
According to the law of equipartition of energy it has 3 degrees of freedom and thus it is translational kinetic energy. Hence, the answer is total translational kinetic energy.
Therefore, the correct answer is Option A.
Note: We can conclude that the model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. The molecules are in constant, random motion and frequently collide with each other and with the walls of any container. The higher the temperature, the greater the motion. The kinetic theory of gases explains the macroscopic properties of gases, such as volume, pressure, and temperature, as well as transport properties such as viscosity, thermal conductivity and mass diffusivity. The model also accounts for related phenomena, such as Brownian motion. The kinetic molecular theory can be used to explain each of the experimentally determined gas laws. The pressure of a gas results from collisions between the gas particles and the walls of the container. Each time a gas particle hits the wall, it exerts a force on the wall.
Complete step by step answer
Given in the question that,
$\mathrm{P}=\dfrac{2 \mathrm{E}}{3 \mathrm{V}}$
$\Rightarrow \mathrm{PV}=\dfrac{2}{3} \mathrm{E}$
$\Rightarrow \mathrm{nRT}=\dfrac{2}{3} \mathrm{E} \quad\{$ as $\mathrm{PV}=\mathrm{nRT}$ ideal gas equation $\}$
$\Rightarrow \dfrac{3}{2} \mathrm{nRT}=\mathrm{E}$
$\Rightarrow \dfrac{3}{2} \mathrm{KT}=\mathrm{E} \quad\{\mathrm{K}=\mathrm{nR}\}$
According to the law of equipartition of energy it has 3 degrees of freedom and thus it is translational kinetic energy. Hence, the answer is total translational kinetic energy.
Therefore, the correct answer is Option A.
Note: We can conclude that the model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. The molecules are in constant, random motion and frequently collide with each other and with the walls of any container. The higher the temperature, the greater the motion. The kinetic theory of gases explains the macroscopic properties of gases, such as volume, pressure, and temperature, as well as transport properties such as viscosity, thermal conductivity and mass diffusivity. The model also accounts for related phenomena, such as Brownian motion. The kinetic molecular theory can be used to explain each of the experimentally determined gas laws. The pressure of a gas results from collisions between the gas particles and the walls of the container. Each time a gas particle hits the wall, it exerts a force on the wall.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

