Answer
Verified
114.9k+ views
Hint:The values of maximum and minimum of the potential at a point due to an electric dipole will be determined by the angles like if \[\theta = {0^0},\cos \theta = 1\] then the electric potential will be maximum at the dipole axis and if \[\theta = {180^0},\cos \theta = - 1\] then the electric potential will be minimum at the dipole axis
Formula used:
The potential due to this dipole is given as,
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
Where,
p is dipole moment,
r is distance from dipole,
k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\] and \[{\varepsilon _0}\] is permittivity.
Complete step by step solution:
The potential due to this dipole is:
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
If \[\theta = {0^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {0^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the maximum potential,
\[{V_{\max }} = \dfrac{{kp}}{{{r^2}}}\]
Now If \[\theta = {180^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {{180}^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = - }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the minimum potential,
\[{V_{\min }} = - \dfrac{{kp}}{{{r^2}}}\]
Therefore the potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\].
Hence option D is the correct answer.
Note:The electric potential will be zero at the perpendicular axis of the dipole when \[\theta = {90^0}\] . As we know electric dipoles consist of two charges equal in magnitude (q) but opposite in nature one is a positive charge and other is a negative charge. Electric potential obeys superposition principle due to electric dipole as a whole can be sum of potential due to both the charges positive and negative.
Formula used:
The potential due to this dipole is given as,
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
Where,
p is dipole moment,
r is distance from dipole,
k is coulomb’s constant,\[k = \dfrac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}N{m^2}\] and \[{\varepsilon _0}\] is permittivity.
Complete step by step solution:
The potential due to this dipole is:
\[V = \dfrac{{p\cos \theta }}{{4\pi {\varepsilon _0}{r^2}}}\]
If \[\theta = {0^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {0^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the maximum potential,
\[{V_{\max }} = \dfrac{{kp}}{{{r^2}}}\]
Now If \[\theta = {180^0}\], then we have
\[\begin{array}{l}V = \dfrac{{p\cos {{180}^0}}}{{4\pi {\varepsilon _0}{r^2}}}\\ \Rightarrow V{\rm{ = - }}\dfrac{{kp}}{{{r^2}}}\end{array}\]
This is the minimum potential,
\[{V_{\min }} = - \dfrac{{kp}}{{{r^2}}}\]
Therefore the potential at a point due to an electric dipole will be maximum and minimum when the angles between the axis of the dipole and the line joining the point to the dipole are \[{0^0}\,and\,{\rm{ 18}}{{\rm{0}}^0}\].
Hence option D is the correct answer.
Note:The electric potential will be zero at the perpendicular axis of the dipole when \[\theta = {90^0}\] . As we know electric dipoles consist of two charges equal in magnitude (q) but opposite in nature one is a positive charge and other is a negative charge. Electric potential obeys superposition principle due to electric dipole as a whole can be sum of potential due to both the charges positive and negative.
Recently Updated Pages
JEE Colleges - Detailed Description of Top JEE Colleges
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Other Pages
Young's Double Slit Experiment Derivation
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions