
The molar heat capacity of a gas at constant volume is \[{C_v}\]. If n mole of the gas undergo $\Delta T$ change in temperature, its internal energy will change by \[n{C_{v\;}}\] $\Delta T$
(A) Only if the change of temperature occurs at constant volume
(B) Only if the change of temperature occurs at constant pressure
(C) In any process which in not adiabatic
(D) In any process
Answer
232.8k+ views
Hint: Use the first law of thermodynamics which states that, if the quantity of heat supplied to the system is capable of doing work, then the quantity of heat absorbed by the system is equal to the sum of the external work done by the system, and the increase in the internal energy of the system. Mathematically,
$dQ = dW + dU$
Complete step by step solution
According to the first law of thermodynamics,
$dQ = dW + dU$ ……(i)
Where, dQ = Amount of heat added to the system.
dW = External work done by the system.
dU = Change in internal energy of the system.
Now, we know that specific heat of a gas at constant volume \[\left( {{C_v}} \right)\] is defined as the amount of heat required to raise the temperature of 1g gas through \[1^\circ C\] keeping the volume of the gas constant.
${C_v} = {\left( {\dfrac{{dQ}}{{dt}}} \right)_v} = {\left( {\dfrac{{dU}}{{dt}}} \right)_v}$ ……(ii)
Again, \[dW = PdV\] ……(iii)
Where, P = Pressure
dV = Change in volume
As volume is constant,
$dV = 0$
$\therefore dW = 0$, (From equation (iii))
So, equation (i) becomes
$dQ = dU$
Again, using equation (ii), we get
$dU = {C_v}dT$
For n mole of gas,
$dU = n{C_v}dT$
This can only happen if the temperature change occurred at constant volume. Therefore correct option is A
Note: In thermodynamics, state function is the property whose value does not depend on the path taken by the system to reach a specific value. For example, if a system changes from state 1 to state 2 then the value of dU will depend on the value of dT at state 1 and 2 but not on the path taken to reach the desired result.
$dQ = dW + dU$
Complete step by step solution
According to the first law of thermodynamics,
$dQ = dW + dU$ ……(i)
Where, dQ = Amount of heat added to the system.
dW = External work done by the system.
dU = Change in internal energy of the system.
Now, we know that specific heat of a gas at constant volume \[\left( {{C_v}} \right)\] is defined as the amount of heat required to raise the temperature of 1g gas through \[1^\circ C\] keeping the volume of the gas constant.
${C_v} = {\left( {\dfrac{{dQ}}{{dt}}} \right)_v} = {\left( {\dfrac{{dU}}{{dt}}} \right)_v}$ ……(ii)
Again, \[dW = PdV\] ……(iii)
Where, P = Pressure
dV = Change in volume
As volume is constant,
$dV = 0$
$\therefore dW = 0$, (From equation (iii))
So, equation (i) becomes
$dQ = dU$
Again, using equation (ii), we get
$dU = {C_v}dT$
For n mole of gas,
$dU = n{C_v}dT$
This can only happen if the temperature change occurred at constant volume. Therefore correct option is A
Note: In thermodynamics, state function is the property whose value does not depend on the path taken by the system to reach a specific value. For example, if a system changes from state 1 to state 2 then the value of dU will depend on the value of dT at state 1 and 2 but not on the path taken to reach the desired result.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

