
The instantaneous value of alternating current and voltages in a circuit are given as\[i = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t} \right)Ampere\] , \[e = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t + \dfrac{\pi }{3}} \right)Volt\].The average power in Watts consumed in the circuit is:
A) \[\dfrac{{\sqrt 3 }}{4}\]
B) \[\dfrac{1}{2}\]
C) \[\dfrac{1}{8}\]
D) \[\dfrac{1}{4}\]
Answer
173.1k+ views
Hint: In an alternating current circuit, values of both electromotive force and current change continuously with respect to time. So, we cannot calculate the power directly. the average power for the sinusoidal function will be obtained by averaging over one period. The average power of an alternating current circuit is also known as the true power of the electrical circuit.
First we calculate root mean square (rms) values of current and voltage. Then we find the phase difference between them. Phase difference is denoted by symbol. In question phase difference is \[\dfrac{\pi }{3}\]in radian or\[{60^0}\].
Formula used: We know that the power is equal to the product of voltage and time. We calculate average power by the formula \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Complete step by step solution:
Given: \[i = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t} \right)Ampere\] and \[e = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t + \dfrac{\pi }{3}} \right)Volt\]
i.e., \[{i_0} = \dfrac{1}{{\sqrt 2 }}\] and \[{V_0} = \dfrac{1}{{\sqrt 2 }}\].
Therefore, average power consumed in the circuit is given by
\[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
\[{P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \cos {60^0}\]
We know that \[{V_{rms}} = \dfrac{1}{2}\], \[{i_{rms}} = \dfrac{1}{2}\]and \[\phi = {60^0}\]
\[ \Rightarrow {P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{8}W\]
\[\therefore {P_{av}} = \dfrac{1}{8}W\]
Hence, Average power consumed in AC circuit is \[\therefore {P_{av}} = \dfrac{1}{8}W\].
Additional information: For AC circuits, the instantaneous power is constantly changing with varying amounts of time. The curve of power vs time is sinusoidal. As we get this type of curve i.e., it makes it difficult to measure power. Calculating average or mean value of the power, It is therefore more convenient to calculate. The average value of the instantaneous power over a fixed number of cycles, the average power of sinusoidal curve is given simply as: \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Note: Students must be careful to calculate root mean square values of current and voltage. They must be careful to find phase difference between voltage and current. In question rms values are given. Don’t put \[\dfrac{1}{{\sqrt 2 }}\]as \[{V_{rms}}\] and \[{i_{rms}}\]in formula. Here \[\dfrac{1}{{\sqrt 2 }}\]is \[{i_0}\] for current and \[\dfrac{1}{{\sqrt 2 }}\]is \[{V_0}\].
First we calculate root mean square (rms) values of current and voltage. Then we find the phase difference between them. Phase difference is denoted by symbol. In question phase difference is \[\dfrac{\pi }{3}\]in radian or\[{60^0}\].
Formula used: We know that the power is equal to the product of voltage and time. We calculate average power by the formula \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Complete step by step solution:
Given: \[i = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t} \right)Ampere\] and \[e = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t + \dfrac{\pi }{3}} \right)Volt\]
i.e., \[{i_0} = \dfrac{1}{{\sqrt 2 }}\] and \[{V_0} = \dfrac{1}{{\sqrt 2 }}\].
Therefore, average power consumed in the circuit is given by
\[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
\[{P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \cos {60^0}\]
We know that \[{V_{rms}} = \dfrac{1}{2}\], \[{i_{rms}} = \dfrac{1}{2}\]and \[\phi = {60^0}\]
\[ \Rightarrow {P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{8}W\]
\[\therefore {P_{av}} = \dfrac{1}{8}W\]
Hence, Average power consumed in AC circuit is \[\therefore {P_{av}} = \dfrac{1}{8}W\].
Additional information: For AC circuits, the instantaneous power is constantly changing with varying amounts of time. The curve of power vs time is sinusoidal. As we get this type of curve i.e., it makes it difficult to measure power. Calculating average or mean value of the power, It is therefore more convenient to calculate. The average value of the instantaneous power over a fixed number of cycles, the average power of sinusoidal curve is given simply as: \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Note: Students must be careful to calculate root mean square values of current and voltage. They must be careful to find phase difference between voltage and current. In question rms values are given. Don’t put \[\dfrac{1}{{\sqrt 2 }}\]as \[{V_{rms}}\] and \[{i_{rms}}\]in formula. Here \[\dfrac{1}{{\sqrt 2 }}\]is \[{i_0}\] for current and \[\dfrac{1}{{\sqrt 2 }}\]is \[{V_0}\].
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Faraday's Law - Formula & Example

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Enthalpy of Combustion with Examples for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions
