Answer
Verified
114.9k+ views
Hint In this question, the base current is changed and it is reflected upon by the collector current. The emitter current in this case is constant. Hence, this configuration is that of a common emitter transistor. First we need to find the current gain in the circuit. Using this value of current gain, we will find the voltage gain in the circuit using the input and output resistance.
Complete step by step solution
We are given a common emitter circuit in this question. The current gain in common emitter transistor is given as:
\[\beta = \dfrac{{\Delta {I_C}}}{{\Delta {I_B}}} = \dfrac{{2 \times {{10}^{ - 3}}}}{{40 \times {{10}^{ - 6}}}}\]
\[\beta = 50\]
To find the voltage gain, we need to use input and output resistance of the transistor.
\[Voltage\,gain = \beta \dfrac{{{R_{out}}}}{{{R_{in}}}} = 50\dfrac{{4000}}{{100}} = 2000\]
Therefore, the option with the correct answer is option D.
Note
In this question, the emitter was made common, i.e. its voltage and current were kept constant. We can make similar transistors which have the common base, or transistors with a common collector. However, the common emitter transistor is highly used in amplifying signals and many other applications.
Complete step by step solution
We are given a common emitter circuit in this question. The current gain in common emitter transistor is given as:
\[\beta = \dfrac{{\Delta {I_C}}}{{\Delta {I_B}}} = \dfrac{{2 \times {{10}^{ - 3}}}}{{40 \times {{10}^{ - 6}}}}\]
\[\beta = 50\]
To find the voltage gain, we need to use input and output resistance of the transistor.
\[Voltage\,gain = \beta \dfrac{{{R_{out}}}}{{{R_{in}}}} = 50\dfrac{{4000}}{{100}} = 2000\]
Therefore, the option with the correct answer is option D.
Note
In this question, the emitter was made common, i.e. its voltage and current were kept constant. We can make similar transistors which have the common base, or transistors with a common collector. However, the common emitter transistor is highly used in amplifying signals and many other applications.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main