Answer
Verified
98.1k+ views
Hint: The equation for the oscillating wave is given as $y = A\sin (\omega t - K) + b$. where. $A$ = Displacement amplitude, $\omega $ is the wavelength, $t$ is the time, $K$ is some arbitrary constant representing time offset, $b$ is arbitrary displacement offset. Comparing the given equation with this equation, we can easily find the given values. Ratio of displacement is given as $\dfrac{A}{\lambda }$. The maximum velocity of a particle is known as velocity amplitude. The wave speed is calculated using the relation between velocity, frequency and wavelength.
Complete step by step solution:
The given relation is: $y = 6.0\sin (600t - 1.8x)$ comparing this with the equation of oscillating wave, $x = A\sin (\omega t - K) + b$ we have:
\[A = 6.0\]
\[\omega = 600\]
\[K = 1.8\]
Since, we are given that the displacement is in the order of ${10^{ - 5\,}}\,m$. Therefore, we can have the amplitude as:
\[A = 6.0 \times {10^{ - 5}}\,m\]
The wavelength \[\lambda \] is given as:
\[\lambda = \dfrac{{2\pi }}{K}\]
Substituting the values, we get:
\[\lambda = \dfrac{{2\pi }}{{1.8}}\] …………………………………...equation \[(1)\]
The displacement amplitude is given as \[\dfrac{A}{\lambda }\] , substituting the value of amplitude and wavelength, we get:
\[\dfrac{A}{\lambda } = \dfrac{{6 \times {{10}^{ - 5}}}}{{\dfrac{{2\pi }}{{1.8}}}}\]
\[ \Rightarrow \dfrac{A}{\lambda } = \dfrac{{5.4 \times {{10}^{ - 5}}}}{\pi }\]
\[ \Rightarrow \dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[1.7 \times {10^{ - 5}}\]
To find the ratio of the velocity amplitude of the particles to the wave speed, let us find the velocity of the particle and the wave speed.
As, velocity is rate of change of displacement thus, differentiating the equation of displacement we will get the velocity of the particle.
\[v = \dfrac{{dy}}{{dt}}\]
Here, \[v\] is the velocity of the particle.
\[ \Rightarrow v = \dfrac{{d\left( {6.0\sin (600t - 1.8x)} \right)}}{{dt}}\]
\[ \Rightarrow v = 3600\cos (600t - 1.8x) \times {10^{ - 5}}\]
This velocity will be maximum when the value of cosine is maximum. The maximum value of cosine is $1$ . Therefore, the maximum velocity will be
\[ \Rightarrow v = 3600(1) \times {10^{ - 5}}\]
\[ \Rightarrow v = 3600 \times {10^{ - 5}}\,m\,{s^{ - 1}}\] ………………………….equation \[(2)\]
Now, for the speed of the wave, we have
\[\omega = 600\]
But \[\omega = 2\pi f\] , \[f\] is the frequency. Thus, the frequency will be:
\[f = \dfrac{\omega }{{2\pi }}\]
Substituting the values, we get
\[f = \dfrac{{600}}{{2\pi }}\]
The wave speed \[{v_s}\] is given \[{v_s} = f \times \lambda \] .
\[ \Rightarrow {v_s} = \dfrac{{600}}{{2\pi }} \times \dfrac{{2\pi }}{{1.8}}\]
\[ \Rightarrow {v_s} = \dfrac{{1000}}{3}\,m\,{s^{ - 1}}\] …………………..equation \[(3)\]
Dividing equation \[2\] by equation \[3\] , we will get the ratio of the velocity amplitude of the particles to the wave speed.
\[\dfrac{v}{{{v_s}}} = \dfrac{{3600 \times {{10}^{ - 5}}}}{{\dfrac{{1000}}{3}}}\]
\[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[\dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\] and ratio of the velocity amplitude of the particles to the wave speed is \[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\].
Note: The ratio will be a dimensionless quantity. Comparing the term with the general equation, we get the value of various variables. The equation of the velocity of the particle is obtained by differentiating the equation of the displacement with respect to time. The wave speed is calculated using the relation between speed, frequency and wavelength. The magnitude of displacement is given as ${10^{ - 5\,}}\,m$.
Complete step by step solution:
The given relation is: $y = 6.0\sin (600t - 1.8x)$ comparing this with the equation of oscillating wave, $x = A\sin (\omega t - K) + b$ we have:
\[A = 6.0\]
\[\omega = 600\]
\[K = 1.8\]
Since, we are given that the displacement is in the order of ${10^{ - 5\,}}\,m$. Therefore, we can have the amplitude as:
\[A = 6.0 \times {10^{ - 5}}\,m\]
The wavelength \[\lambda \] is given as:
\[\lambda = \dfrac{{2\pi }}{K}\]
Substituting the values, we get:
\[\lambda = \dfrac{{2\pi }}{{1.8}}\] …………………………………...equation \[(1)\]
The displacement amplitude is given as \[\dfrac{A}{\lambda }\] , substituting the value of amplitude and wavelength, we get:
\[\dfrac{A}{\lambda } = \dfrac{{6 \times {{10}^{ - 5}}}}{{\dfrac{{2\pi }}{{1.8}}}}\]
\[ \Rightarrow \dfrac{A}{\lambda } = \dfrac{{5.4 \times {{10}^{ - 5}}}}{\pi }\]
\[ \Rightarrow \dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[1.7 \times {10^{ - 5}}\]
To find the ratio of the velocity amplitude of the particles to the wave speed, let us find the velocity of the particle and the wave speed.
As, velocity is rate of change of displacement thus, differentiating the equation of displacement we will get the velocity of the particle.
\[v = \dfrac{{dy}}{{dt}}\]
Here, \[v\] is the velocity of the particle.
\[ \Rightarrow v = \dfrac{{d\left( {6.0\sin (600t - 1.8x)} \right)}}{{dt}}\]
\[ \Rightarrow v = 3600\cos (600t - 1.8x) \times {10^{ - 5}}\]
This velocity will be maximum when the value of cosine is maximum. The maximum value of cosine is $1$ . Therefore, the maximum velocity will be
\[ \Rightarrow v = 3600(1) \times {10^{ - 5}}\]
\[ \Rightarrow v = 3600 \times {10^{ - 5}}\,m\,{s^{ - 1}}\] ………………………….equation \[(2)\]
Now, for the speed of the wave, we have
\[\omega = 600\]
But \[\omega = 2\pi f\] , \[f\] is the frequency. Thus, the frequency will be:
\[f = \dfrac{\omega }{{2\pi }}\]
Substituting the values, we get
\[f = \dfrac{{600}}{{2\pi }}\]
The wave speed \[{v_s}\] is given \[{v_s} = f \times \lambda \] .
\[ \Rightarrow {v_s} = \dfrac{{600}}{{2\pi }} \times \dfrac{{2\pi }}{{1.8}}\]
\[ \Rightarrow {v_s} = \dfrac{{1000}}{3}\,m\,{s^{ - 1}}\] …………………..equation \[(3)\]
Dividing equation \[2\] by equation \[3\] , we will get the ratio of the velocity amplitude of the particles to the wave speed.
\[\dfrac{v}{{{v_s}}} = \dfrac{{3600 \times {{10}^{ - 5}}}}{{\dfrac{{1000}}{3}}}\]
\[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\]
Therefore, the ratio of the displacement amplitude of the particles to the wavelength of the wave is \[\dfrac{A}{\lambda } = 1.7 \times {10^{ - 5}}\] and ratio of the velocity amplitude of the particles to the wave speed is \[\dfrac{v}{{{v_s}}} = 1.08 \times {10^{ - 4}}\].
Note: The ratio will be a dimensionless quantity. Comparing the term with the general equation, we get the value of various variables. The equation of the velocity of the particle is obtained by differentiating the equation of the displacement with respect to time. The wave speed is calculated using the relation between speed, frequency and wavelength. The magnitude of displacement is given as ${10^{ - 5\,}}\,m$.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A ball of mass 05 Kg moving with a velocity of 2ms class 11 physics JEE_Main
If two bulbs of 25W and 100W rated at 200V are connected class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
A mosquito with 8 legs stands on the water surface class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main