![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The efficiency of Carnot engine when source temperature is ${T_1}$ and sink temperature is ${T_2}$ will be?
A. $\dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
B. $\dfrac{{{T_2} - {T_1}}}{{{T_2}}}$
C. $\dfrac{{{T_1} - {T_2}}}{{{T_2}}}$
D. $\dfrac{{{T_1}}}{{{T_2}}}$
Answer
125.1k+ views
Hint:This problem is based on Carnot Engine in thermodynamics, we know that all the parameters such as temperature, heat exchange, work done, etc., vary with the given conditions of the system and surroundings hence, analyze every option given and check which option seems to be more appropriate for the given problem.
Formula Used:
The efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Complete answer:
We know that, the efficiency of Carnot Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$ … (1)
where, ${T_L} = $Lower Absolute Temperature = Temperature of Cold Reservoir
and, ${T_H} = $Higher Absolute Temperature = Temperature of Hot Reservoir
Now, by the definition of source and sink, we know that source is a kind of reservoir that supplies an infinite amount of heat and sink is a kind of reservoir that absorbs infinite amount of heat.
Therefore, we can say that Source behaves like a hot reservoir and Sink behaves like a cold reservoir.
As the temperature of the Source is ${T_1}$ and temperature of the Sink is ${T_2}$(given). Then, from eq. (1), we get
$ \Rightarrow {\eta _{carnot}} = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
$ \Rightarrow {\eta _{carnot}} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
Thus, the efficiency of Carnot engine when source temperature is ${T_1}$ and sink temperature is ${T_2}$ will be $\dfrac{{{T_1} - {T_2}}}{{{T_1}}}$ .
Hence, the correct option is (A) $\dfrac{{{T_1} - {T_2}}}{{{T_1}}}$.
Thus, the correct option is A.
Note:Since this is a multiple-choice question (derivation-based) hence, it is essential that given conditions are analyzed very carefully to give an accurate solution. While writing an answer to this kind of numerical problem, always keep in mind to use the mathematical proven relations to find the solution.
Formula Used:
The efficiency of Carnot’s Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$
where ${T_L} = $Lower Absolute Temperature = Temperature of the Sink
and, ${T_H} = $Higher Absolute Temperature = Temperature of the source
Complete answer:
We know that, the efficiency of Carnot Heat Engine is given as: -
${\eta _{carnot}} = 1 - \dfrac{{{T_L}}}{{{T_H}}}$ … (1)
where, ${T_L} = $Lower Absolute Temperature = Temperature of Cold Reservoir
and, ${T_H} = $Higher Absolute Temperature = Temperature of Hot Reservoir
Now, by the definition of source and sink, we know that source is a kind of reservoir that supplies an infinite amount of heat and sink is a kind of reservoir that absorbs infinite amount of heat.
Therefore, we can say that Source behaves like a hot reservoir and Sink behaves like a cold reservoir.
As the temperature of the Source is ${T_1}$ and temperature of the Sink is ${T_2}$(given). Then, from eq. (1), we get
$ \Rightarrow {\eta _{carnot}} = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
$ \Rightarrow {\eta _{carnot}} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
Thus, the efficiency of Carnot engine when source temperature is ${T_1}$ and sink temperature is ${T_2}$ will be $\dfrac{{{T_1} - {T_2}}}{{{T_1}}}$ .
Hence, the correct option is (A) $\dfrac{{{T_1} - {T_2}}}{{{T_1}}}$.
Thus, the correct option is A.
Note:Since this is a multiple-choice question (derivation-based) hence, it is essential that given conditions are analyzed very carefully to give an accurate solution. While writing an answer to this kind of numerical problem, always keep in mind to use the mathematical proven relations to find the solution.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)