Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The dimensional formula for young's modulus is:
A. $[M{L^{ - 1}}{T^{ - 2]}}$
B. $[{M^0}L{T^{ - 2}}]$
C. $[ML{T^{ - 2}}]$
D. $[M{L^2}{T^{ - 2}}]$

Answer
VerifiedVerified
149.1k+ views
like imagedislike image
Hint In this type of question we have to define the unit of any physical quantity .After defining the unit we have to arrange it in the form of a fundamental unit like in mass, length and time.
For this type of question we have appropriate knowledge of the formula of that definition:

Complete Step by step solution
Young`s modulus is defined as the ratio of the stress and the strain
Mathematically, $young`s{\text{ modulus = }}\dfrac{{Stress}}{{strain}}$
Stress is defined as the force per unit area
Mathematically,$Stress = \dfrac{{force}}{{area}}$
Strain is defined as the ratio of the change in the length and original legth
Mathematically,$Strain = \dfrac{{\Delta l}}{l}$
Now $young`s{\text{ modulus = }}\dfrac{{Stress}}{{strain}}$
Putting the value of stress and strain in above given formula
$young`s{\text{ modulus = }}\dfrac{{\dfrac{{force}}{{area}}}}{{\dfrac{{\Delta l}}{l}}}$
So
$young`s{\text{ modulus = }}\dfrac{{force \times l}}{{area \times \Delta l}}$
$force = mass \times acceleration$
$
  acceleration = \dfrac{{velocity}}{{time}} \\
  velocity = \dfrac{{dis\tan ce}}{{time}} \\
 $
$area = length \times length$
So after seeing above equation
If we write – for mass=M, for length=L and for time =T
So dimension for velocity will be$L{T^{ - 1}}$
Dimension for acceleration will be $L{T^{ - 2}}$
Similar dimension for force will be $ML{T^{ - 2}}$
Dimension for area will be ${L^2}$
So dimension for young`s modulus will be-
$\dfrac{{{\text{dimension of force }}}}{{\dim ension{\text{ of area}}}} = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} = M{L^{ - 1}}{T^{ - 2}}$
So dimension for young`s modulus will be:$M{L^{ - 1}}{T^{ - 2}}$

Hence answer number A will be the correct option.

Note Dimension is used to check the unit of similar quantities . After knowing the dimension we can formulate that physical quantity and after which we can define that quantity .
Dimension is also used to change the physical quantity from one unit system to another.