
The density of ice is $x\,gmc{c^{ - 1}}$ and that of water is $y\,gmc{c^{ - 1}}$ . What is the change in volume in $cc$ , when $m\,gm$ of ice melts?
Answer
172.2k+ views
Hint: Use the given formula of the volume and find the volume of the increase in the water by substituting the given values. Similarly find the volume of the decrease in the ice amount. The difference in these values gives the answer for the change in the volume of the product when the ice melts.
Useful formula:
The volume is given by
$V = \dfrac{m}{\rho }$
Where $V$ is the volume of the water or ice, $m$ is its mass and $\rho $ is its density.
Complete step by step solution:
It is given that the
The $m\,gm$ of ice melts
The density of ice is $x\,gmc{c^{ - 1}}$
The density of water is $y\,gmc{c^{ - 1}}$
We know that when the ice melts, it forms into the state of the water.
Using the formula of the volume, the volume of the water and the density is obtained as follows.
Volume of the ice reduces, $V = \dfrac{m}{x}$
The volume of the water increases, $V = \dfrac{m}{y}$
So the change in the volume is the difference of the volume of the decrease in the ice volume and the increase in the water volume.
$\Delta V = \dfrac{m}{y} - \dfrac{m}{x}$
By simplification of the above equation, we get
$\Delta V = m\left( {\dfrac{1}{y} - \dfrac{1}{x}} \right)\,cc$
Hence the change in the volume is obtained as $m\left( {\dfrac{1}{y} - \dfrac{1}{x}} \right)\,cc$ .
Note: The water commonly lies between three states as vapour in the gaseous state, water in the liquid state and ice in the solid state. The $cc$ specified in the above solution determines the cubic centimeter which is the unit of the volume.
Useful formula:
The volume is given by
$V = \dfrac{m}{\rho }$
Where $V$ is the volume of the water or ice, $m$ is its mass and $\rho $ is its density.
Complete step by step solution:
It is given that the
The $m\,gm$ of ice melts
The density of ice is $x\,gmc{c^{ - 1}}$
The density of water is $y\,gmc{c^{ - 1}}$
We know that when the ice melts, it forms into the state of the water.
Using the formula of the volume, the volume of the water and the density is obtained as follows.
Volume of the ice reduces, $V = \dfrac{m}{x}$
The volume of the water increases, $V = \dfrac{m}{y}$
So the change in the volume is the difference of the volume of the decrease in the ice volume and the increase in the water volume.
$\Delta V = \dfrac{m}{y} - \dfrac{m}{x}$
By simplification of the above equation, we get
$\Delta V = m\left( {\dfrac{1}{y} - \dfrac{1}{x}} \right)\,cc$
Hence the change in the volume is obtained as $m\left( {\dfrac{1}{y} - \dfrac{1}{x}} \right)\,cc$ .
Note: The water commonly lies between three states as vapour in the gaseous state, water in the liquid state and ice in the solid state. The $cc$ specified in the above solution determines the cubic centimeter which is the unit of the volume.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

CBSE Important Questions for Class 11 Physics Units and Measurement - 2025-26
