
The decay constant of radioactive substances is \[4.33 \times {10^{ - 4}}\] per year. Calculate its half life period.
Answer
179.7k+ views
Hint Radioactive decay is a process in which spontaneous breakdown of an atomic nucleus of a radioactive substance occurs which results in the emission of radiation from the nucleus.
Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
It is given by ${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$ where $\lambda $ is the decay constant of the radioactive substance.
Complete step by step answer Let us first discuss the process of radioactive decay.
Radioactive decay is a process in which spontaneous breakdown of an atomic nucleus of a radioactive substance occurs which results in the emission of radiation from the nucleus. The radioactive nucleus which undergoes decay in a radioactive process is known as parent nucleus and this parent nucleus produces a daughter nucleus in the radioactive process. It is given by the formula
$N = {N_0}{e^{ - \lambda T}}$ where ${N_0}$ is the initial amount of the radioactive substance, $N$ is the amount of that substance remains after time $T$ and $\lambda $ is the decay constant of the radioactive substance.
Now, Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
So, if we put $N = \dfrac{{{N_0}}}{2}$ in the above equation of radioactive decay, we will get the expression for half life period. Therefore we get
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$
Now, according to the question, decay constant of radioactive substance is given as \[\lambda = 4.33 \times {10^{ - 4}}{\text{ per year}}\] . So, substituting this value in the above equation we have
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{0.693}}{{4.33 \times {{10}^{ - 4}}}} = 1.6 \times {10^3}{\text{ years}}$
Hence, half life period of the substance is $1.6 \times {10^3}{\text{ years}}$ .
Note The radioactive decay is a random process, i.e. we are not able to predict the decay of individual atoms. Radioactive isotopes normally decay to harmless substances. Some isotopes decay in hours or even minutes but others decay very slowly and some decay in years.
The principle of the half-life period was first discovered by Ernest Rutherford in 1907.
Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
It is given by ${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$ where $\lambda $ is the decay constant of the radioactive substance.
Complete step by step answer Let us first discuss the process of radioactive decay.
Radioactive decay is a process in which spontaneous breakdown of an atomic nucleus of a radioactive substance occurs which results in the emission of radiation from the nucleus. The radioactive nucleus which undergoes decay in a radioactive process is known as parent nucleus and this parent nucleus produces a daughter nucleus in the radioactive process. It is given by the formula
$N = {N_0}{e^{ - \lambda T}}$ where ${N_0}$ is the initial amount of the radioactive substance, $N$ is the amount of that substance remains after time $T$ and $\lambda $ is the decay constant of the radioactive substance.
Now, Half-Life is basically the time needed by a radioactive substance (or one half the atoms) to disintegrate or decay into another substance.
So, if we put $N = \dfrac{{{N_0}}}{2}$ in the above equation of radioactive decay, we will get the expression for half life period. Therefore we get
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{\ell n2}}{\lambda }$
Now, according to the question, decay constant of radioactive substance is given as \[\lambda = 4.33 \times {10^{ - 4}}{\text{ per year}}\] . So, substituting this value in the above equation we have
${t_{{1{\left/
{ {1 2}} \right.
} 2}}} = \dfrac{{0.693}}{{4.33 \times {{10}^{ - 4}}}} = 1.6 \times {10^3}{\text{ years}}$
Hence, half life period of the substance is $1.6 \times {10^3}{\text{ years}}$ .
Note The radioactive decay is a random process, i.e. we are not able to predict the decay of individual atoms. Radioactive isotopes normally decay to harmless substances. Some isotopes decay in hours or even minutes but others decay very slowly and some decay in years.
The principle of the half-life period was first discovered by Ernest Rutherford in 1907.
Recently Updated Pages
JEE Main 2023 (January 24th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2022 June 29 Shift 1 Question Paper with Answer Key

JEE Main 2022 June 25 Shift 2 Question Paper with Answer Key

JEE Main 2022 June 25 Shift 1 Question Paper with Answer Key

JEE Main 2022 June 24 Shift 1 Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
