
The angular momentum of an electron in ${{n}^{th}}$ orbit is given by
(A) $nh$
(B) $\dfrac{h}{2\pi n}$
(C) $\dfrac{nh}{2\pi }$
(D) $\dfrac{{{n}^{2}}h}{2\pi }$
Answer
139.2k+ views
Hint Use the third postulate that says about the quantization of the angular momentum of an electron in the ${{n}^{th}}$ orbit. The postulate states that the angular momentum is an integral multiple of $\dfrac{h}{2\pi }$ where $h$ is the Planck’s constant.
Complete Step by step solution
The Bohr model of an atom is one of the first atomic models to successfully explain the position of the emission and absorption line in the hydrogen atom. Bohr formulated three postulates to explain his model of the hydrogen atom. The third postulate states that the angular momentum of an electron in an orbit is quantized.
The angular momentum is defined as the product of the moment of inertia of an object and its velocity. It can be viewed as the linear momentum in rotational motion. The angular momentum is given by
$L=mvr$
Here, $m$ is the mass of the electron, $v$ is the velocity of the electron, and $r$ is the radius of the orbit, or it can also be said as the distance of the electron from the nucleus.
Bohr’s third postulate states that the angular momentum of an electron revolving around the nucleus of an atom is quantized. The angular momentum is an integral multiple of $\dfrac{h}{2\pi }$ where $h$ is the Planck’s constant.
That is,
$mvr=n\dfrac{h}{2\pi }$
Here, $n$ has integer values and is the principal quantum number. It denotes the orbit in which the electron resides.
Hence, option (C) is the correct option.
Note
Although Bohr’s atomic model is successful in explaining the position of the absorption and emission lines spectra, it had some errors. One of the major drawbacks of Bohr’s atomic model was that it was primarily used to explain hydrogen atoms.
Complete Step by step solution
The Bohr model of an atom is one of the first atomic models to successfully explain the position of the emission and absorption line in the hydrogen atom. Bohr formulated three postulates to explain his model of the hydrogen atom. The third postulate states that the angular momentum of an electron in an orbit is quantized.
The angular momentum is defined as the product of the moment of inertia of an object and its velocity. It can be viewed as the linear momentum in rotational motion. The angular momentum is given by
$L=mvr$
Here, $m$ is the mass of the electron, $v$ is the velocity of the electron, and $r$ is the radius of the orbit, or it can also be said as the distance of the electron from the nucleus.
Bohr’s third postulate states that the angular momentum of an electron revolving around the nucleus of an atom is quantized. The angular momentum is an integral multiple of $\dfrac{h}{2\pi }$ where $h$ is the Planck’s constant.
That is,
$mvr=n\dfrac{h}{2\pi }$
Here, $n$ has integer values and is the principal quantum number. It denotes the orbit in which the electron resides.
Hence, option (C) is the correct option.
Note
Although Bohr’s atomic model is successful in explaining the position of the absorption and emission lines spectra, it had some errors. One of the major drawbacks of Bohr’s atomic model was that it was primarily used to explain hydrogen atoms.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

A conducting loop carrying a current is placed in a class 12 physics JEE_Main
