![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Suppose speed of light $c$, force $F$ and kinetic energy $K$ are taken as the fundamental units, then the dimensional formula for mass will be
(A) $K{C^{ - 2}}$
(B) $K{F^{ - 2}}$
(C) $C{K^{ - 2}}$
(D) $F{C^{ - 2}}$
Answer
125.4k+ views
Hint We solve this problem by using the method of dimensional analysis. We find the dimensional formula of the qualities mentioned in the question. We equate the product of these dimensional formulas to the dimensional formula of mass. Solving the equation and finding the powers we get the dimensional formula of mass in terms of speed of light, force, and kinetic energy.
Complete step by step answer:
Speed of light has units of \[m/s\](meters per second)
Its dimensional formula is
\[C = [L{T^{ - 1}}]\]
The units of force are newton or \[kgm/{s^2}\] (kg meter per second square)
The dimensional formula of force is
\[F = [{M^1}{L^1}{T^{ - 2}}]\]
Unit of kinetic energy is $kg{m^2}/{s^2}$(kg meter square per second square or joules)
The dimensional formula of kinetic energy is
$K = [{M^1}{L^2}{T^{ - 2}}]$
Here,
Mass, Length, time are represented by$M,L,T$ respectively
The mass has a dimensional formula of
$M = [{M^1}]$
Equating the dimensional formula of mass with the product of other quantities
\[M = {C^\alpha }{F^\beta }{K^\gamma }\].....(1)
\[[{M^1}] = {[L{T^{ - 1}}]^\alpha }{[{M^1}{L^1}{T^{ - 2}}]^\beta }{[{M^1}{L^2}{T^{ - 2}}]^\gamma }\]
\[\Rightarrow [{M^1}] = [{M^{\beta + \gamma }}{L^{\alpha + \beta + 2\gamma }}{T^{ - \alpha - 2\beta - 2\gamma }}]\]
Solving for the powers
\[ \;\beta + \gamma = 1\]
\[\alpha + \beta + 2\gamma = 0\]
\[\alpha + 2\beta + 2\gamma = 0\]
Solving the above three equations,
$\beta = 0$
$\gamma = 1$
$\alpha = - 2$
Substituting the powers back in equation (1)
\[[M] = [{C^{ - 2}}{K^1}]\]
Hence option (A) $K{C^{ - 2}}$is the correct answer.
Additional information An equation, which gives the relation between fundamental units and derived units in terms of dimensions is called dimensional formula. In terms of mechanics length, mass, time are taken as the fundamental units.
Note Dimensional analysis can be very useful to solve any problem. Using dimensional analysis, we can find the units of any quantity. Dimensional analysis can be very handy even for cross-checking the final answer units. This way we can be sure that the answer we found is correct.
Complete step by step answer:
Speed of light has units of \[m/s\](meters per second)
Its dimensional formula is
\[C = [L{T^{ - 1}}]\]
The units of force are newton or \[kgm/{s^2}\] (kg meter per second square)
The dimensional formula of force is
\[F = [{M^1}{L^1}{T^{ - 2}}]\]
Unit of kinetic energy is $kg{m^2}/{s^2}$(kg meter square per second square or joules)
The dimensional formula of kinetic energy is
$K = [{M^1}{L^2}{T^{ - 2}}]$
Here,
Mass, Length, time are represented by$M,L,T$ respectively
The mass has a dimensional formula of
$M = [{M^1}]$
Equating the dimensional formula of mass with the product of other quantities
\[M = {C^\alpha }{F^\beta }{K^\gamma }\].....(1)
\[[{M^1}] = {[L{T^{ - 1}}]^\alpha }{[{M^1}{L^1}{T^{ - 2}}]^\beta }{[{M^1}{L^2}{T^{ - 2}}]^\gamma }\]
\[\Rightarrow [{M^1}] = [{M^{\beta + \gamma }}{L^{\alpha + \beta + 2\gamma }}{T^{ - \alpha - 2\beta - 2\gamma }}]\]
Solving for the powers
\[ \;\beta + \gamma = 1\]
\[\alpha + \beta + 2\gamma = 0\]
\[\alpha + 2\beta + 2\gamma = 0\]
Solving the above three equations,
$\beta = 0$
$\gamma = 1$
$\alpha = - 2$
Substituting the powers back in equation (1)
\[[M] = [{C^{ - 2}}{K^1}]\]
Hence option (A) $K{C^{ - 2}}$is the correct answer.
Additional information An equation, which gives the relation between fundamental units and derived units in terms of dimensions is called dimensional formula. In terms of mechanics length, mass, time are taken as the fundamental units.
Note Dimensional analysis can be very useful to solve any problem. Using dimensional analysis, we can find the units of any quantity. Dimensional analysis can be very handy even for cross-checking the final answer units. This way we can be sure that the answer we found is correct.
Recently Updated Pages
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Energetics Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE General Topics in Chemistry Important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)