
Reynold number $\left( R \right)$ determines whether or not the flow of a liquid through a pipe is streamlined. This constant is a combination of velocity $\left( v \right)$, density $\left( \rho \right)$, coefficient of viscosity $\left( n \right)$ and diameter $D$ of the pipe. Deriving the formula for $R$ using the method of dimensions, write the power of $D$ , on which the Reynold number depends.
Answer
157.5k+ views
Hint The Reynolds number can be said as the ratio of the inertial force to that of the viscous force in a fluid. It can be derived from the given parameters by writing its dimensions and equating it with the unit less Reynolds number and simplifying it.
Complete step by step solution
It is given that the Reynold number depends on the velocity, density, coefficient of viscosity and the diameter. Hence this relation is also written as
$R = K{v^a}{\rho ^b}{\eta ^c}{D^1}$
The constant $K$ is added because there may be some change in the value even though it is derived from the given relation. Let us write the dimension of the above parameters to derive the formula. We know that the dimension of the velocity is $m{s^{ - 1}}$ , the dimension of the density is $Kg{m^{ - 3}}$ , coefficient of viscosity is $sc{m^{ - 1}}$ and for the diameter is $m$.
${M^0}{L^0}{T^0}$= ${\left[ {L{T^{ - 1}}} \right]^a}{\left[ {M{L^{ - 3}}} \right]^b}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^c}{L^1}$
In the above step, the Reynold number is substituted with no unit.
${M^0}{L^0}{T^0}$= ${M^{b + c}}{L^{a - 3b - c + 1}}{T^{a - c}}$
By equating the corresponding dimensions and the values. First let us equate the values of the mass.
$b + c = 0$
$b = - c$ --------------(1)
Then the parameters of length are considered.
$a - 3b - c + 1 = 0$
Substitute the value of the (1) in the above equation,
$a + 3c - c = - 1$
$a + 2c = - 1$ ---------------(2)
Then the parameter of time is considered.
$ - a - c = 0$
$a = - c$
Substituting this value in the equation (2),
$ - c + 2c = - 1$
$c = - 1$
$a = b = 1$
Substituting these in the dimension equation, we get
$R = K{v^1}{\rho ^1}{\eta ^{ - 1}}{D^1}$
Hence the above equation may also written as
$R = K\dfrac{{v\rho D}}{\eta }$
The above formula holds for the Reynolds number.
Note The Reynolds number determines the characteristics of the fluid that either it is streamlined or not. If the Reynolds number is less than $2000$ , it is laminar flow and if the Reynolds number is between $2000$ to $4000$ , it is turbulent flow.
Complete step by step solution
It is given that the Reynold number depends on the velocity, density, coefficient of viscosity and the diameter. Hence this relation is also written as
$R = K{v^a}{\rho ^b}{\eta ^c}{D^1}$
The constant $K$ is added because there may be some change in the value even though it is derived from the given relation. Let us write the dimension of the above parameters to derive the formula. We know that the dimension of the velocity is $m{s^{ - 1}}$ , the dimension of the density is $Kg{m^{ - 3}}$ , coefficient of viscosity is $sc{m^{ - 1}}$ and for the diameter is $m$.
${M^0}{L^0}{T^0}$= ${\left[ {L{T^{ - 1}}} \right]^a}{\left[ {M{L^{ - 3}}} \right]^b}{\left[ {M{L^{ - 1}}{T^{ - 1}}} \right]^c}{L^1}$
In the above step, the Reynold number is substituted with no unit.
${M^0}{L^0}{T^0}$= ${M^{b + c}}{L^{a - 3b - c + 1}}{T^{a - c}}$
By equating the corresponding dimensions and the values. First let us equate the values of the mass.
$b + c = 0$
$b = - c$ --------------(1)
Then the parameters of length are considered.
$a - 3b - c + 1 = 0$
Substitute the value of the (1) in the above equation,
$a + 3c - c = - 1$
$a + 2c = - 1$ ---------------(2)
Then the parameter of time is considered.
$ - a - c = 0$
$a = - c$
Substituting this value in the equation (2),
$ - c + 2c = - 1$
$c = - 1$
$a = b = 1$
Substituting these in the dimension equation, we get
$R = K{v^1}{\rho ^1}{\eta ^{ - 1}}{D^1}$
Hence the above equation may also written as
$R = K\dfrac{{v\rho D}}{\eta }$
The above formula holds for the Reynolds number.
Note The Reynolds number determines the characteristics of the fluid that either it is streamlined or not. If the Reynolds number is less than $2000$ , it is laminar flow and if the Reynolds number is between $2000$ to $4000$ , it is turbulent flow.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
