
Planet A has mass M and radius R. Planet B has half the mass and half the radius of planet A. If the escape velocities from the planets A and B are \[{v_A}\] and ${v_B}$ respectively, then $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ ,The value of n is
(A) $3$
(B) $2$
(C) $4$
(D) $5$
Answer
162.3k+ views
Hint: In order to solve this question, we will first find the escape velocity for both the planets A and B using the general formula of escape velocity and then we will find the ratio of the escape velocity of planets A and B and then compare with the given form to solve for the value of n.
Formula used:
The escape velocity for a planet is given by:
$v = \sqrt {\dfrac{{2GM}}{R}} $
Where, G is the gravitational constant, M is the mass of the Planet and R is the radius of the planet.
Complete answer:
We have given that, mass of the planet A is M and its radius is R then its escape velocity is calculated as ${v_A} = \sqrt {\dfrac{{2GM}}{R}} \to (i)$ and for planet B, let its mass is M’ then according to the question $M' = \dfrac{M}{2}$ and let its Radius is R’ then $R' = \dfrac{R}{2}$ so its escape velocity is given by:
${v_B} = \sqrt {\dfrac{{2G'M'}}{{R'}}} $
$
{v_B} = \sqrt {\dfrac{{2G\dfrac{M}{2}}}{{\dfrac{R}{2}}}} \\
{v_B} = \sqrt {\dfrac{{2GM}}{R}} \to (ii) \\
$
On dividing equations (i) and (ii) we get,
$\dfrac{{{v_A}}}{{{v_B}}} = 1$
Now, comparing this value with given form $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ we get,
$
\dfrac{n}{4} = 1 \\
\Rightarrow n = 4 \\
$
Hence, the correct option is (C) $4$.
Note: It should be remembered that escape velocity is the minimum velocity needed for an object to escape the gravitational field effect of any planet, star or any celestial object, and escape velocity is independent of the mass of the object, it only depends upon Radius and mass of the planet.
Formula used:
The escape velocity for a planet is given by:
$v = \sqrt {\dfrac{{2GM}}{R}} $
Where, G is the gravitational constant, M is the mass of the Planet and R is the radius of the planet.
Complete answer:
We have given that, mass of the planet A is M and its radius is R then its escape velocity is calculated as ${v_A} = \sqrt {\dfrac{{2GM}}{R}} \to (i)$ and for planet B, let its mass is M’ then according to the question $M' = \dfrac{M}{2}$ and let its Radius is R’ then $R' = \dfrac{R}{2}$ so its escape velocity is given by:
${v_B} = \sqrt {\dfrac{{2G'M'}}{{R'}}} $
$
{v_B} = \sqrt {\dfrac{{2G\dfrac{M}{2}}}{{\dfrac{R}{2}}}} \\
{v_B} = \sqrt {\dfrac{{2GM}}{R}} \to (ii) \\
$
On dividing equations (i) and (ii) we get,
$\dfrac{{{v_A}}}{{{v_B}}} = 1$
Now, comparing this value with given form $\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{n}{4}$ we get,
$
\dfrac{n}{4} = 1 \\
\Rightarrow n = 4 \\
$
Hence, the correct option is (C) $4$.
Note: It should be remembered that escape velocity is the minimum velocity needed for an object to escape the gravitational field effect of any planet, star or any celestial object, and escape velocity is independent of the mass of the object, it only depends upon Radius and mass of the planet.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
