
Number of $\sigma $ and $\pi $ bonds in ${C_2}$ molecule is/are:
(A) $1\sigma {\text{ and 1}}\pi $
(B) $1\sigma {\text{ and 2}}\pi $
(C) $2\pi {\text{ only}}$
(D) $1\sigma {\text{ and 3}}\pi $
Answer
154.5k+ views
Hint: Recall the molecular orbital theory (MOT) and write the electronic configuration of ${C_2}$ molecule according to MOT. You will find that the ${C_2}$ molecule has two sets of paired orbitals in the degenerate pi-bonding orbitals and bond order comes out to be 2. Thus, ${C_2}$ molecule will form two bonds and only these 4 electrons in the degenerate pi-bonding orbitals will be involved in bonding.
Complete step by step solution:
Diatomic carbon is a green-greyish inorganic compound. It has a chemical formula ${C_2}$ and written as $C = C$. It is a component of carbon vapour and is unstable at ambient temperature. Its IUPAC name is ethenediylidene or dicarbon.
Bonding in ${C_2}$ molecule: Configuration of ${C_2}$ molecule according to molecular orbital theory (MOT) is: ${(\sigma 1s)^2}{({\sigma ^*}1s)^2}{(\sigma 2s)^2}{({\sigma ^*}2s)^2}{(\pi 2{p_x})^2}{(\pi 2{p_y})^2}$
The bond order of ${C_2}$ molecule is:
Bond order= $\dfrac{{{\text{no}}{\text{. of bonding electrons - no}}{\text{. of antibonding electrons }}}}{2} = \dfrac{{8 - 4}}{2} = 2$
Therefore, the bond order of ${C_2}$ molecule is two. This means there should exist a double bond between the two carbons in a ${C_2}$ molecule. But some studies show that a quadruple bond exists in dicarbon. MO theory also shows that the last two paired sets of electrons enter in the degenerate (having same energy) pi-bonding set of orbitals i.e. $\pi 2{p_x}$ and $\pi 2{p_y}$. These 4 electrons are in the pi orbitals and thus the two bonds in the ${C_2}$ molecule will be pi bonds only and no sigma bond. Usually, whenever there is a double bond, one is a sigma bond before a pi-bond. But this is not the case in ${C_2}$ molecules.
Thus, the number of $\sigma $ and $\pi $ bonds in ${C_2}$ molecule will be zero and two respectively.
Therefore, the correct option is C.
Note: Usually most people think that ${C_2}$ molecule, having 8 valence electrons, does not exist. But it does exist at very high temperatures and in the gaseous state. At low temperatures, ${C_2}$ aggregates to form many allotropic forms of carbon like buckyballs, nanotubes, graphene sheets, graphite, soot and so on. ${C_2}$ or carbon is diamagnetic in nature because all the electrons are paired.
Complete step by step solution:
Diatomic carbon is a green-greyish inorganic compound. It has a chemical formula ${C_2}$ and written as $C = C$. It is a component of carbon vapour and is unstable at ambient temperature. Its IUPAC name is ethenediylidene or dicarbon.
Bonding in ${C_2}$ molecule: Configuration of ${C_2}$ molecule according to molecular orbital theory (MOT) is: ${(\sigma 1s)^2}{({\sigma ^*}1s)^2}{(\sigma 2s)^2}{({\sigma ^*}2s)^2}{(\pi 2{p_x})^2}{(\pi 2{p_y})^2}$
The bond order of ${C_2}$ molecule is:
Bond order= $\dfrac{{{\text{no}}{\text{. of bonding electrons - no}}{\text{. of antibonding electrons }}}}{2} = \dfrac{{8 - 4}}{2} = 2$
Therefore, the bond order of ${C_2}$ molecule is two. This means there should exist a double bond between the two carbons in a ${C_2}$ molecule. But some studies show that a quadruple bond exists in dicarbon. MO theory also shows that the last two paired sets of electrons enter in the degenerate (having same energy) pi-bonding set of orbitals i.e. $\pi 2{p_x}$ and $\pi 2{p_y}$. These 4 electrons are in the pi orbitals and thus the two bonds in the ${C_2}$ molecule will be pi bonds only and no sigma bond. Usually, whenever there is a double bond, one is a sigma bond before a pi-bond. But this is not the case in ${C_2}$ molecules.
Thus, the number of $\sigma $ and $\pi $ bonds in ${C_2}$ molecule will be zero and two respectively.
Therefore, the correct option is C.
Note: Usually most people think that ${C_2}$ molecule, having 8 valence electrons, does not exist. But it does exist at very high temperatures and in the gaseous state. At low temperatures, ${C_2}$ aggregates to form many allotropic forms of carbon like buckyballs, nanotubes, graphene sheets, graphite, soot and so on. ${C_2}$ or carbon is diamagnetic in nature because all the electrons are paired.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NH4NO3 and NH4NO2 on heating decomposes in to A NO2 class 11 chemistry JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced 2025 Notes

Electrical Field of Charged Spherical Shell - JEE
