Answer
Verified
114.9k+ views
Hint:To answer this question, you need to know what magnetic moment is and what all are the factors affecting magnetic moment. Recall what magnetic moment indicates and how it is measured. This question is based on the basics of magnetism and measures your knowledge in magnetism.
Formula Used:
We have an equation for magnetic dipole moment of a loop as:
$\mu =IA$
Where I is the current carried by the loop and A is the area of the loop.
Complete answer:
Magnetic dipole moment is also called magnetic moment. It measures the tendency of an object to align in a magnetic field. It is produced due to the spin angular moment of electrons or due to motion of electrons in a closed loop.
From the equation of magnetic dipole moment, it is clear that magnetic dipole moment is directly proportional to current in loop and to area of the loop. Therefore, we can eliminate option (A) and option (B).
We know that area is a vector quantity and direction of area vector is always perpendicular to the plane of the loop. Therefore, we can say that the magnetic dipole moment of a current carrying loop is directly proportional to the magnitude of area and it will have the same direction as that of the area vector since current is a scalar quantity and magnetic dipole moment is a vector quantity.
Therefore, the answer is option (D)
Thus, the correct option is D.
Note:Current does have both the magnitude and direction but it is considered as scalar quantity since it doesn’t obey the vector law of addition. That is why we don’t consider the direction of current when we say the direction of the magnetic dipole moment.
Formula Used:
We have an equation for magnetic dipole moment of a loop as:
$\mu =IA$
Where I is the current carried by the loop and A is the area of the loop.
Complete answer:
Magnetic dipole moment is also called magnetic moment. It measures the tendency of an object to align in a magnetic field. It is produced due to the spin angular moment of electrons or due to motion of electrons in a closed loop.
From the equation of magnetic dipole moment, it is clear that magnetic dipole moment is directly proportional to current in loop and to area of the loop. Therefore, we can eliminate option (A) and option (B).
We know that area is a vector quantity and direction of area vector is always perpendicular to the plane of the loop. Therefore, we can say that the magnetic dipole moment of a current carrying loop is directly proportional to the magnitude of area and it will have the same direction as that of the area vector since current is a scalar quantity and magnetic dipole moment is a vector quantity.
Therefore, the answer is option (D)
Thus, the correct option is D.
Note:Current does have both the magnitude and direction but it is considered as scalar quantity since it doesn’t obey the vector law of addition. That is why we don’t consider the direction of current when we say the direction of the magnetic dipole moment.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
Two plane mirrors are inclined at angle theta as shown class 12 physics JEE_Main